

Shree Warana Vibhag Shikshan Mandal's Tatyasaheb Kore Institute of Engineering And Technology, Warananagar

Department of Chemical Engineering

First Year M. Tech. Chemical Engineering Syllabus Structure under Autonomous Status of TKIET, Warananagar

2021-22

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar

First Year M. Tech. Chemical Engineering (Semester-I) (To be implemented from 2021-22)

Credit Scheme

			Teaching Scheme			cheme	Credit Scheme			ne
Course Code	Category	Course Title	тн	Tut	Р	Total Contact Hours	ТН	Tut	Р	Total Credit Assigned
Ch - PCC- 1011	PCC	Advanced Momentum & Heat Transfer	3			3	3			3
Ch - PCC-1011T	PCC	Advanced Momentum & Heat Transfer		1		1		1		1
Ch - PCC- 1021	РСС	Advanced Chemical Engineering Thermodynamic	3			3	3			3
Ch - PCC-1021T	PCC	Advanced Chemical Engineering Thermodynamic		1		1		1		1
Ch – PE - 1031	PE	Program Elective – I (Process Modeling in Chemical Engineering)	3			3	3			3
Ch - PE- 1041	PE	Program Elective-II (Nano Technology)	3			3	3			3
Ch - PE- 1051	PE	Program Elective-III (Process Equipment Design)	3			3	3			3
Ch - LC- 1061	LC	Advanced Separation Laboratory			4	4			2	2
Ch - SW - 1071	SW	Seminar-I			2	2			1	1
			15	02	06	23	15	2	3	20

Evaluation Scheme

Course Code	Category	Course Title	Examination Scheme							
				ISE		FSF	тw	0	р	Total
			ISE -I	ISE -II	Avg.	ESE	1 **	U	1	Total
Ch - PCC- 1011	PCC	Advanced Momentum & Heat Transfer	40	40	40	60				100
Ch - PCC- 1011T	PCC	Advanced Momentum & Heat Transfer					25			25
Ch - PCC- 1021	РСС	Advanced Chemical Engineering Thermodynamic	40	40	40	60	-			100
Ch - PCC- 1021T	РСС	Advanced Chemical Engineering Thermodynamic					25			25
Ch - PE- 1031	PE	Program Elective – I (Process Modeling in Chemical Engineering)	40	40	40	60				100
Ch - PE-1041	PE	Program Elective-II (Nano Technology)	40	40	40	60				100
Ch - PE-1051	PE	Program Elective-III (Process Equipment Design)	40	40	40	60				100
Ch - LC-1061	LC	Advanced Separation Laboratory					25	25		50
Ch - SW 1071	SW	Seminar-I					50			50
					200	300	125	25		650

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar

First Year M. Tech. Chemical Engineering (Semester-II) (To be implemented from 2021-22)

Credit Scheme

		Teaching Scheme					Credit Scheme			
Course Code	Categor y	Course Title		Tut	Р	Total Contact Hours	тн	Tut	Р	Total Credit Assigned
Ch - PCC- 2011	PCC	Advanced Mass Transfer	3			3	3			3
Ch – PCC 2011T	PCC	Advanced Mass Transfer		1				1		1
Ch - PCC- 2021	PCC	Chemical Process Control	3			3	3			3
Ch – PCC 2021T	PCC	Chemical Process Control		1				1		1
Ch - PE- 2031	PE	Program Elective-IV (Modern Reaction Engg.)	3			3	3			3
Ch - PE- 2041	PE	Program Elective-V (Advance Separation Techniques)	3			3	3			3
Ch - OEC- 2051	OEC	Open Elective Course (Project Management)	3			3	3			3
Ch - LC- 2061	LC	Analytical Laboratory			4	4			2	2
Ch - SW - 2071	SW	Seminar-II			2	2			1	1
Ch - 2081		Comprehensive Viva								
			15	02	06	23	15	2	3	20

Evaluation Scheme

Course Code	Category		Examination Scheme							
Course coue	Category	Course Title		ISE		FSF	TW	0	р	Total
			ISE -I	ISE -II	Avg.	LSL	1 VV	U	r	Total
Ch - PCC- 2011	PCC	Advanced Mass Transfer	40	40	40	60				100
Ch - PCC- 2011T	PCC	Advanced Mass Transfer					25			25
Ch - PCC- 2021	PCC	Chemical Process Control	40	40	40	60				100
Ch - PCC- 2021T	PCC	Chemical Process Control					25			25
Ch - PE- 2031	РСС	Program Elective-IV (Modern ReactionEngg.)	40	40	40	60				100
Ch - PE- 2041	PE	Program ElectiveV (Advance Separation Techniques)	40	40	40	60				100
Ch - OEC 2051	OEC	Open Elective Course (Project Management)	40	40	40	60				100
Ch - LC- 2061	LC	Analytical Laboratory					25			25
Ch - SW - 2071	SW	Seminar-II					50			50
Ch - 2081		Comprehensive Viva						25		25
					200	300	125	25		650

	First Year M. Tech. ChemicalEngineering (Semester-I)									
Course Code	Program Elective-I	Course Code	Program Elective- II	Course Code	Program Elective-III					
Ch - PE- 10311	Process Modeling in Chem.Engg.	Ch - PE-10411	Nano Technology	Ch - PE-10511	Bio Process Engineering					
Ch - PE- 10312	Corrosion Engg.	Ch - PE-10412	Green Technology	Ch - PE-10512	Materials Engineering					
Ch - PE- 10313	Polymer & Rubber Technology	Ch - PE-10413	Pharmaceutical Biotechnology	Ch - PE-10513	Process Equipment Design					

	First Year M. Tech. Chemical Engineering(Semester-II)										
Course	Program Elective-	Course	Program Elective-V	Course	Open Elective Course						
Code	1V	Code		Code							
Ch - PE-20311	Modern Reaction Engg.	Ch - PE-20411	Computational Fluid Dynamics	Ch - OEC 20511	Cryogenics						
Ch - PE-20312	Catalysis & Surface Phenome na	Ch - PE-20412	Energy Engineering	Ch - OEC 20512	Design for Manufacture andAssembly						
Ch - PE-20313	Down Stream Processing	Ch - PE-20413	Advance Separation Techniques	Ch - OEC 20513	Waste To Energy.						
				Ch - OEC 20514	Water Power Engineering.						
				Ch - OEC 20515	Advanced Operating Systems						
				Ch - OEC 20516	Artificial Intelligence						
				Ch - OEC 20517	Project Management						
				Ch - OEC 20518	Operational Research						

Shree Warana Vibhag Shikshan Mandal's Tatyasaheb Kore Institute of Engineering And Technology, Warananagar

Second Year M. Tech. Chemical Engineering

Syllabus Structure under Autonomous Status of TKIET, Warananagar2021-2022 Tatyasaheb Kore Institute of Engineering and Technology, Warananagar

Second Year M. Tech. Chemical Engineering (Semester-III)

]	Feachi	ng Sch	eme	Credit Scheme			
Course Code	Category	Course Title	тн	Tut	Р	Total Contact Hours	тн	Tut	Р	Total Credit Assigned
Ch - MC - 3011	МС	ResearchMethodology &Intellectual Property Rights	2			2	2			2
Ch - II - 3021	II	Industrial Training			4	4			2	2
Ch - SLC/AC-3031	SLC/AC	One Course from MOOC/SWAYAM							-	
Ch - PC- 3041	PC	Dissertation Phase-I			16	16			8	8
			2		20	22	02		10	12

(To be implemented from 2021- 2022) Credit Scheme

Evaluation Scheme

Course Code	Category		Examination Scheme						- T - T					
course cour	Category	Course Title	ISE -I	ISE ISE -II	Avg.	ESE	TW	0	Р	Total				
Ch - MC - 3011	мс	ResearchMethodol ogy&Intellectual Property Rights	40	40	40	60				100				
Ch - II - 3021	II	Industrial Training					50			50				
Ch - SLC/AC -3031	SLC/AC	One Course from MOOC/SWAYAM					50	-		50				
Ch - PC- 3041	РС	Dissertation Phase-I					50	50		100				
					40	60	150	50		300				

** Candidate who has unable to get passing marks in certification course has to reappear for improvement at institute level test/ MOOC/SWAYAM

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar

Second Year M. Tech. Chemical Engineering (Semester-IV) (To be implemented from 2021-22)

Credit Scheme

				Teach	ing Sc	heme		Credit Scheme			
Course Code	Cate gory	Course Title	тн	Tut	Р	Total Contact Hours	ТН	Tut	Р	Total Credit Assigned	
Ch - PC-4011	PC	Dissertation Phase-II			32	32			16	16	
					32	32			16	16	

Evaluation Scheme

Course Cate gory					E	xamina	tion Sch	eme		
Code	Cate gory	Course Title	ISE		ISE		тм	0	D	Total
			ISE -I	ISE -II	Avg.	LSL	1 VV	U	r	10141
Ch - PC-4011	PC	Dissertation Phase-II					100	100		200
							100	100	-	200
									-	

List of Abbreviations

Abbreviations	Title
PCC	Professional Core Course
PE	Program Elective
OEC	Open Elective Course
LC	Laboratory Course
МС	Mandatory Course
SW	Seminar work
П	Industrial Internship
PC	Dissertation
SLC/AC	Self-Learning Course/Audit course

Tates as leale	Vana Lua	Litude of Da	aire a autie a C	Taska alagar	Wanananaaan
Tarvasanen	K Ore Ins	пппе ог е п	omeering A	<i>i echnology</i>	warananaoar
1 at y aballoo	IXOIC IIIS	indic of Lin	gincornig o	c reemondy,	mananagai
2			U U		6

First Year M.Tech.Chemical Engineering Semester- I

(PCC) CH1011: Advanced Momentum and Heat Transfer

Examination Scheme

Teaching Scheme

Lectures	03Hrs/Week	ISE	40 Marks
Tutorials	01	ESE	60 Marks
Total Credits	04	TW	25 Marks
		Duration of ESE	

Course Objectives (CO):

1: Introduce analogy between momentum and heat transfer

2: Explain general conservation equations for transport phenomena

3: Develop momentum balance for a given system at macroscopic and microscopic scale.

4: Analysis of governing equations to obtain velocity profiles

5 :Assist students in developing ability to make engineering judgments ,including judgements regarding process safety.

6. Discuss applications in various heat transfer equipment in process industries ,Heat Transfer Augmentation & Pinch Technology

	Course Contents	Hours
Unit 1	Boundary Layer Flow: Boundary layer equations, separation of BL, Blasius solution for flat state, properties of BL equation, Momentum integral equations.	(04)
Unit 2	Turbulent Flow: Reynolds equation for turbulent flow, velocity distribution for flowin pipe. Statistical theory of turbulence. Drag reduction etc.Non-Newtonian Fluids: Rheological behavior of non-Newtonian fluids, laminar flowin cylindrical tubes, laminar flow between parallel plates, laminar flow in annuli.Generalized relationship for power law model	(04)
Unit 3	Agitation And Mixing: Velocities in stirred tanks. Flow patterns in stirred tanks, Power consumptions in stirred vessels, mixing equipments.Multiphase Flow: Two phase gas vapor liquid flow, horizontal and vertical flow of gas-liquids, liquids, gas-solid mixtures, slip and hold up effect, phase separation and settling behavior, analysis of stratified and bubble flow, formation of bubbles and drops and their size distribution and hold up in different flow system, momentum and energyrelations.Matien In The Eluidized Bade Dubbling fluidization area in fluidization and bubbles.	(06)
	Motion In The Fluidized Bed: Bubbling fluidization, semi-fluidization, mixing and segregation in fluidized bed, Numerical and application of fluidization.	(05)

	Introduction: Review of heat Transfer, transient heat conduction; Lumped system			
	analysis, heat transfer analogies.			
IInit A	Turbulent Forced Convective Heat Transfer: Momentum and energy equations -			
0шt 4	Heat pipe.	(04)		
	Heat Transfer In Two Phase Systems: Heat transfer regimes and flow maps			
	Condensation: Basic process, on planner surface, inside and over pipe of pure and			
	multicomponent vapors. Heat transfer in paced bed and fluidized beds. Overall			
	pressure drop and void calculation methods. Flow regimes in two phase flow. Drift	(05)		
	flux model, annular flow, critical flow, flow instabilities, homogeneous flow, and separated flow	· · /		
Unit 5	Non-Newtonian Flow Heat Transfer: Comparative study of Newtonian and non-			
	Newtonian fluid in context with heat transfer, Newtonian and non-Newtonian heat			
	transfer in circular tube, coils and other configuration, Non-Newtonian heat transfer in			
	PFR, CSTR. Generalized relationship of power law fluid, forced convection heat	(04)		
	transfer to Bingham plastic and power law fluid in circular conduits.			
	Heat Transfer Augmentation: Active and passive techniques, rough surface, swirl			
T T • 4 6	flow generation and compound augmentation. Compact heat exchangers.			
Umt 6	Introduction of Pinch Analysis and Process integration.	(05)		
Assign	ments: Each student will submit minimum 6 assignments based on the different topics in c	onsultation with faculty,		
in the a	area of advanced momentum and heat transfer; keeping track of the recent technological tr	ends and developments.		
Cours	e Outcomes (CO): At the end of course students will			
1: Able	e to understand the chemical and physical transport processes and their mechanism			
2: Able	e to do heat, mass and momentum transfer analysis			
3: Able	e to analyze industrial problems along with appropriate approximations and boundary cond	litions		
4: Able	e to develop steady and time dependent solutions along with their limitations			
5: Und	erstand the concepts of boundary layer and its estimation in different flows			
6: Und	erstanding of various types of heat transfer process and devices			
Text B	Gooks			
1	R.B. Bird, W.E. Stewart and E.N. Lightfoot, -Transport Phenomena, John Wiley & Sor	ns, Inc, New York		
2	Ranjeet Basugade, - Advance Heat Transfer Augmentation Technique: Heat Transfer Aug	mentation in Triangular Fin		
	Heat Exchanger Using Rectangular Wings Kindle			
3	3 Pinch Analysis and Process Integration A User Guide on Process Integration for the Efficient Use of Energy Second			
2	The Flow of Complex Mixture in Pipes" by Govier and Aziz			
3	ChemicalEngineering" by Coulson and Richardson, Volume I			
4	D.G. Knudsan and D. L. Katz. Fluid Dynamics and Heat transfer. Mc-Graw Hill,			
5	C.J. Geankoplis" Transport Processes Momentum And Mass" Bacon Inc.			
6	HArison & Davidson, Fluidization Engg, Mc-Graw Hill, 1968			

	Useful Websites
1	http://nptel.ac.in/
2	http://swayam.gov.in/
3	http://www.youtube.com/user/nptelhrd

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar						
		F	First Year M. Tech Chemical Engineering Semester- I			
		PCC 1	021: Advanced Chemical Engineering Thermodynamics			
Teachir	ng Sche	me	Examination	Scheme		
Lectures03 Hrs/WeekISE40 Ma		rks				
Tutorial	ls	01 Hr/Week	ESE	60 Mar	ks	
Total C	redits	04	TW	25 Mar	ks	
			Duration of E	SE .		
Course	e Objec	ctives (CO):				
	1.]	Define & describ	be the basic laws of thermodynamic			
	2. 2	Explain the crite	ria for equilibrium with stability of thermodynamic system.			
	3.]	Develop skills to	make appropriate assumptions and ability to predict intermolec	ular potential	and	
		excess property l	behavior of multi- component systems.			
	4.	Analysis & estin	nation of the Gibbs free energy and fugacity of a component in r	nixture		
	5	Judge the Chemi	cal equilibrium and evaluate the degrees of freedom for chemica	ally reacting s	ystems	
	6.]	Discuss statistica	al thermodynamic terms.			
			Course Contents		Hours	
	Detai	led review of t	thermodynamics laws and basic concepts: Laws of therm	odynamics,		
Unit 1	Conce	epts of entropy,	Intensive and extensive variables, Enthalpy, Gibbs free er	and extensive variables, Enthalpy, Gibbs free energy,		
	Equations of state, other important thermodynamic properties.					
	Equilibrium and Stability in one component systems: The criteria for equilibrium,					
Unit 2	Stability of thermodynamic system, The molar Gibbs free energy and fugacity of a pure				(00)	
	component. The Gibbs phase rule for one component system. Thermodynamic properties of			(08)		
	phase	transitions Prol	blems.			
1	I				1	

	The Thermodynamic of Multi Component Mixtures: The thermodynamic description of			
Unit 3	mixtures. The partial molar gibbs free energy and the generalized Gibbs – Duhem equation.			
	A notation for chemical reactions. The equations on change for a multicomponent system.	(08)		
	Thermodynamic state for a multicomponent multiphase system. The Gibbs phase rule			
	Problems (Non Reactive).			
	The estimation of the Gibbs free energy and fugacity of a component in mixture: The			
	ideal gas mixture, The partial molar mixture properties. The fugacity of a species in gaseous,			
Unit	1 liquid and solid mixtures. Several correlative liquid mixtures (activity coefficient) models	(08)		
	Problems. UNIFAC method, UNIQUAC equation, Vapor liquid equilibrium using activity			
	coefficient models, problems.			
	Chemical Reaction equilibrium: Chemical equilibrium in a single phase system,			
TT • 4	Heterogeneous chemical reactions, Chemical equilibrium when several reactions occur in	(00)		
Unit	single phase, Phase rule and Duhem's theorem for reacting systems, Degree of freedom	(08)		
	analysis for non reacting and reacting systems			
	Introduction to Statistical thermodynamics : Quantum considerations, Microstates,			
Unit	Macrostates and thermodynamic probability, Physical models, Boltzmann statistics, Fermi-	(08)		
	Dirac statistics and Bose – Einstein statistics, Partition function, Phase space,			
Assig	nments: Each student will submit minimum 6 assignments based on the different topics in consultation with	n faculty,		
in the	area of thermodynamics of phase equilibria & chemical equilibria keeping track of the recent technologic	al trends		
and d	evelopments.			
Cour	se Outcomes (CO): At the end of course students should be able to			
1.Formulate and manipulate the thermodynamic treatment of arbitrary processes.				
2.Formulate and analyze specific Chemical Engineering problems using fundamental concepts.				
3.Seleo	et appropriate approximations for practical problem solving.			
4. Understand the implications of approximations on the efficiency and accuracy of the solution				
Text	Books			
1	Chemical Engineering Thermodynamics – Stanlay Sandler II nd edition Wiley graham in chemical			
	engineering.			

Refe	rence Books
1	Introduction to Chemical Engineering Thermodynamics: J.M. Smith, H.C.Vanness McGraw Hill
	International book company.
2	Thermodynamics – by J.P.Holman IV th edition McGraw Hill Inter
3	Statistical thermodynamics- M.C.Gupta Wiley Eastern Ltd.
4	"Chemical Engineering Thermodynamics" K.V.Narayanan
5	"Principles of Chemical Equilibrium", Kenneth Denbigh
6	"Chemical Engineering thermodynamics", Y. V. C. Rao,
7	"Chemical Engineering Thermodynamics", T. E. Daubert
8	"Chemical and Process Thermodynamics", B. G. Kyle
Usef	ul Websites
1	http://nptel.ac.in/
2	http://swayam.gov.in/
3	http://www.youtube.com/user/nptelhrd

	Tatyasaheb Kore Institute of Engineering & Technology, Warananagar			
	First Year M.Tech. Chemical Engineering Semester- I			
	Elective-I : Ch-PE-1031 : Process Modeling in Chemical			
		Engineering		
Teaching S	Scheme		Examinati	on Scheme
Lectures	03 Hrs/Week		ISE	40 Marks
Tutorials			ESE	60 Marks
Total Cred	its 03		TW	
			Duration of	fESE .
Course O	bjectives (CO):			
1. Introduc	e fundamentals of c	reating mathematical models of chemical proce	ess systems.	
2. Generat	e steady and dynami	c model for different processes.		
3. Solve pr	ocess design proble	ms, based on fundamental analysis and using n	nathematica	l models of chemical
processes.	processes.			
4. Impleme	4. Implementation on mathematical tools to analyze the system both to gain insight and make predictions.			
5. Explain	5. Explain verification/ validation of simulation model through the simulators.			
	Course Contents Hours			

	Introduction to dynamic models: Mass balance equation - Balancing			
	procedure, Case studies: CSTR, Tubular reactor, Coffee percolator, Total			
	mass balance – Case Studies: Tank drainage, Component balances - Case			
	Studies: Waste holding tank, Energy balance- Parallel reaction in a semi			
Unit 1	continuous reactor with large temperature difference, Momentum balances -	(06)		
	CSTR, Gas liquid mass transfer in a continuous reactor.			
	Modeling of stage wise processes: Reactor Configurations, Generalized			
	model description, Heat transfer to and from reactors, Steam heating in jacket,			
	Dynamics of the metal jacket walls.			
	Mass transfer models: liquid-liquid extraction, distillation, Multicomponent			
	separation, multi component steam distillation, absorber- stage wise			
Unit 2	absorption, steady state gas absorption with heat effects, evaporator.	(06)		
Omt 2	Model Discrimination And Parameter Estimation: Rate equations, Batch	(00)		
	reactor - Constant volume, Semi - batch reactor, CSTR - Constant volume			
	CSTR, CSTR cascade.			
	Lumped and distributed system: Distributed system- Counter current heat			
	exchanger, Flasher design, Condensation, Definition of lumped parameter			
Unit 3	model. Mathematical models of heat- transfer equipments: Shell & tube heat	(06)		
	exchangers, Evaporators, Fired heaters, Partial condensers. Plug flow reactor,			
	Plug flow reactor contactors, Liquid –liquid extraction column dynamics.			
	Flow sheet simulation : Process flow sheet simulation, Process and			
Unit 4	information matrix, Materials and Energy balance computation using modular	(06)		
	approach, Flocess analysis, Flocess variables, selection, Equipment selection.			
Unit 5	Absorbers evaporators and crystallizes introduction to simulation packages	(06)		
Omt 5	like GPSS_CSMP	(00)		
	Process Simulators: Introduction to professional simulator like UNISIM.			
Unit 6	Aspen. Mathematical tools like SciLab, Introduction to Solver and Poly Math	(06)		
	etc.			
~				
Course	Outcomes (CO): At the end of course students will			
1. de	fine physical problems in terms of mathematical modeling and how it is related.			
2. apply the need for modeling, estimate necessary model complexity through modeling process.				
3. recognize how models are developing from rate laws, balances and constitutive equations.				
4. solve the basis of chemical engineering process and adjustable parameters in them.				
5. an	alyze the mathematical tool to predict the chemical engineering process			
1				

6. create the small modeling with simulation for any physical chemical engineering problem

Text	Books
1	John Ingham, Irving, J. Dunn, Elmar, Heinzle Jiri, E. Prenosil, "Chemical Engineering Dynamics", VCH Publishers Inc., New York, 1974.
2	Lubeyn W.L. "Process Modeling, Simulation and Control Engineering ", McGraw Hill Book
3	Edgar, T.F. and D.M. Himmelblau - "Optimization of Chemical Processes ", McGraw Hill BookCo., New York, 1989.
4	R. W. Gaikwad, Dr. Dhirendra, "Process Modeling and Simulation", Central Techno Publications, Nagpur, 2003.
Refe	rence Books
1	C. L. Smith, R. L. Pike and P. W. Murill, "Formulation Optimization of Mathematical models", International Text, Pennsylvania, 1970.
2	Roger G. E. Franks, "Modeling and Simulation in Chemical Engineer", Wiley Inter Science, New York, 1972.
Usef	ful Websites
1	Moocs/ Swayam Courses on Process Modeling & Simulation in Chemical Engineering, OpenModelica

	Tatyasaheb Kore Institute of Engineering & Technology, Warananagar				
	First Year M.Tech. Chemical Engineering Semester- I				
	Elective-I : Ch-PE-1031 : CORROSION ENGINEERING				
Teachir	ng Scheme	e		Examination	n Scheme
Lectures	s 0	3 Hrs/Week		ISE	40 Marks
Tutorial	ls	-		ESE	60 Marks
Total Ci	redits 0	3		TW	
				Duration of I	ESE .
Course	e Objecti	ves (CO):			
1.]	Introduce	fundamentals	of Corrosions.		
2. 0	2. Corrosion measurement techniques.				
3.]	Mechanis	sms of corrosic	on.		
4.]	4. Environmental aspects of corrosion.				
5. 1	Explain p	revention and	control of corrosion.		
			Course Contents		Hours
Unit 1	Basic concepts: Definition and importance, Electrochemical nature and forms			and forms	(06)
Umt I	of corrosion, Corrosion rate and its determination.				(00)
	Electro	chemical the	ermodynamics and kinetics: Electrode	potentials,	
Unit 2	Potentia	ıl-pH (Pourbia	x) diagrams, Reference electrodes and experimentary	nental	(06)
	measurements, Faraday's laws, Instrumentation and experimental procedure.				
	Corrosion measurement through polarization techniques: Tafel				
	extrapol	lation plots, I	Polarization resistance method, Commercial	corrosion	
Unit 3	probes,	Other method	s of determining polarization curves.		(06)

	Pitting and crevice corrosion: Mechanisms of pitting and crevice corrosion,				
	Secondary forms of crevice corrosion, Localized pitting, Metallurgical				
Unit	4 features and corrosion: Intergranular corrosion, Weldment corrosion, De-	(06)			
	alloying and dezincification.				
	,				
	Environmental induced cracking: Stress corrosion cracking, Corrosion				
Unit	fatigue cracking, Hydrogen induced cracking, Methods of prevention and	(06)			
CILL	testing, Erosion, Fretting and Wear.				
	Environmental factors and corrosion: Corrosion in water and aqueous				
	solutions, Corrosion in sulphur bearing solutions, Microbiologically induced				
Unit	6 corrosion, Corrosion in acidic and alkaline process streams.	(06)			
	Prevention and control of corrosion : Cathodic protection, Coatings and				
	inhibitors, Material				
	selection and design.				
Cour	rse Outcomes (CO): At the end of course students will				
1.0	define fundamentals of Corrosions.				
2.	apply the Corrosion measurement techniques				
3. 1	recognize Mechanisms of corrosion.				
4. 9	solve the problems related to the environmental impact of corrosion.				
5. :	analyze the problem and its preventive actions.				
Text	Books				
1	Fontana, M.G., Corrosion Engineering, Tata McGraw-Hill (2008). 3rd ed. (seventh				
1	reprint)				
2	Jones, D.A., Principles and Prevention of Corrosion, Prentice-Hall (1996).				
Refer	ence Books				
1	1 Pierre R. Roberge, Corrosion engineering: principles and practice, McGraw-Hill				
	(2008).				
2	2 Sastri, V.S., Ghali, E. and Elboujdaini, M., Corrosion prevention and protection:				
	Practical solutions John Wiley and Sons (2007)				

		Tatyasaheb Kore Institute of Engin	neering & Technology, Warananagar			
		First Year M. Tech Chemi	ical Engineering Semester- I			
		Elective-I : Ch-PE-1031: Pol	lymer and Rubber Technology			
Teachi	ng Sche	me	Examination Scheme			
Lecture	S	03 Hrs/Week	ISE 40 Mar	·ks		
Tutoria	ls		ESE 60 Mar	ks		
Total C	redits	03	TW			
			Duration of ESE .			
Course	e Obje	ctives (CO):				
	1 I	Define & describe the basics of polymer and	d rubber.			
	2	Explain the criteria for the polymerization	process.			
	3	Develop skills to understand and study var	ious processes of polymer and rubber production.			
	4]	o understand the advances in polymer and	rubber technologies.			
	5 To prepare the students to take challenges of polymer field in his profession.					
Course Contents He			Hours			
	Polymerization Fundamentals – Introduction and importance of polymers, Development of					
	polymers, Classification of polymers based on physiochemical structure, Types of					
Unit 1	polymerization, Mechanism of polymerization, Physical properties and technical application,					
	Polymer structure and stereo-regular polymers Molding of plastics into articles,					
	Homogeneous, Bulk, Solution, Emulsion and suspension polymerization and their					
	comp	arison				
	Man	ifacture of industrially important poly	mers for Plastics – Raw materials,			
	polyolefines- polythene, Poly propylene, Vinyl polymers-polyvinyl chloride, polyvinyl					
	acetate, polyvinyl alcohol, polyvinylidiene chloride, Formaldehyde and Epoxy resins and					
Unit 2	acetat	e, polyvinyl alcohol, polyvinylidiene chlo	oride, Formaldehyde and Epoxy resins and	(06)		
Unit 2	acetat their t	e, polyvinyl alcohol, polyvinylidiene chlo ypes, alkyd resins, polyacrylonitrile, poly	oride, Formaldehyde and Epoxy resins and ystyrene and copolymers of styrene, polysters	(06)		

	Manufacture of industrially important polymers for Synthetic fibers –Introduction,	
Unit 3	Classification, properties and preparation, Nylon -6, Nylon – 66, Rayon, Sillicones, Poly	(06)
	silicones, Orlan, Saron, Teflon, Cellulose, and its derivatives.	

	Manufacture of rubber and elastomers – Introduction and importance of rubber, physical	
	and chemical properties of rubber, Classification, Natural Rubber- Structure and properties,	
TT •4 4	Rubber latex production and processing, synthetic rubber- Polymerization methods and unit	
Unit 4	operations involved, Styrene – Butadiene copolymers, Nitrile rubber, Neoprene, Butyl	
	Rubber, Polyisoprene, Polybutadiene, Thiokol, Hypalon, Sillicone Rubber, Polyurethane	
	rubber, Spandex, Sponge rubber, Foam rubber, Laminates, Rubber cement.	
	Processing and manufacture of rubber products – Vulcanizing, Compounding, Rubber	
Unit 5	chemicals, Processing equipment and method, Tyres and tubes manufacture, Reclamation of	(06)
	rubber, Applications of rubber.	
Unit 6	Polymer and rubber industries in India – Development and scope of plastics, Synthetic Fibre, and elastomer industry in India.	(06)

Cou	rse Outcomes (CO): At the end of course students should be able to
	1 Understand polymer and rubber processing
	2 Formulate and analyze specific polymer & rubber Engineering problems using fundamental concepts.
	3 Select appropriate approximations for practical problem solving.
	4 Understand the future of polymer & rubber industry in Indian context.
	5 Understand advanced processes
Text	Books
1	. G.S. Misra, —Introductory Polymer Chemistry , Wiley Eastern Ltd., New Delhi, 1993.
2	D.C. Miles, —Polymer Technology , Chemical Publishing New York, 1979.
3	Fred Billmeyer, —A Text Book of Polymer Science , 3rd Edition, John Wiley and Sons, New York, 1984.
4	b.k.Sharma ,"Industrial Chemistry," 10 th edition, Krishna Prakashan,India Pvt. Ltd. Meerut, 1999
Refe	rence Books
1	Anil Kumar, S.K. Gupta, —Fundamentals of Polymer Science and Engineering , Wiley, 1978.
2	D.J. Williams, —Polymer Science and Engg . Prentice Hall, New York 1971.
3	F. Rodrigues, —Principles of Polymers systems , McGraw Hill, New York 1970
4	George Odian, —Principles of Polymerization , 2nd Edition John Wiley and Sons, New York 1981.
Usef	ul Websites
1	http://nptel.ac.in/
2	http://swayam.gov.in/
3	http://www.youtube.com/user/nptelhrd

	Tatyasaheb Kore Institute of Engineering & Technology, Warananagar				
	First Year M.Tech. Chemical Engineering Semester- I				
	Elective-II : Ch-PE-1041 : Nanotechnology				
Teaching Scheme			Examination Sche	me	
Lectures	03 Hrs/Week		ISE	40 Marks	
Tutorials			ESE	60 Marks	
Total Credits	03		TW		
			Duration of ESE		

Cour	se Objectives (CO):				
1.	Introduce fundamentals of Nanoscience and Nanotechnology.				
2.	Study the concept of nanomaterials.				
3.	Explain the synthesis, purification and application of nanomaterials.				
4.	Study the advances in nanotechnology				
5.	Intellectual property rights of nanotechnology				
	Course Contents	Hours			
Unit 1	Introduction to Nanotechnology:History, Importance of Nanoscales,Fundamental concepts (Bottom-up and Top-down processes).	(07)			
Unit 2	Application of Nanotechnology	(07)			
Unit 3	Nanomaterials: Fundamental concept of nanomaterial, Materials used in nanotechnology, carbon nanotubes-properties	(07)			
Unit 4	Synthesis, Purification, Application of Nanomaterials.	(06)			
Unit s	Recent Advances in Nanotechnology	(07)			
Unit (Intellectual property rights on Nanotechnology: Importance of IP Protection, copy rights and trade secrets	(06)			
Course Outcomes (CO): At the end of course students will					
1.7	To understand the application of Nanoscience in catalysis and green chemistry.				
2. I	Demonstrate the understanding of length scale concepts, nanostructures and nanotechno	ology.			
3.0	Characterization of nanomaterials.				
4. I	Physico chemical aspects of different types of nanostructures.				
5. S scient	systematically solve scientific problems related specifically to nano-technological mate ific and mathematical notation	rials using conventional			
6. I	dentify the principles of processing, and synthesis of nonmaterial's and nanostructures				
Text Books / Reference Books					
1	Principles of Nanotechnology", Phani umar				
2	"Nanomaterials", Vishwanathan				
3	"The Nanoscope" Encyclopedia of Nanoscience and Nanotechnology Vol I to Vol Diwan and Ashish Bharadwaj	6, Edited by Dr.Parag			

	TatyasahebKore Institute of Engineering & Technology, Warananagar				
		First Year M.Tech Chemical Semester- I			
	Elective-II : Ch-PE-1041: Green Technology				
Teaching Scheme			Examination Sche	me	
Lectures	03 Hrs/Week		ISE	40 Marks	
Tutorials			ESE	60 Marks	
Total Credits	03		TW		
			Duration of ESE		

Cour	se Objectives (CO):				
	1.To present different concepts of green technologies.				
	2. To acquire principles of Energy efficient technologies				
	3. To gain knowledge of the importance of life cycle assessment				
	4. To learn the importance of green fuels and its impact on environment	ment.			
	5 To learn zero pollution control aspect				
	Course Contents	Hours			
Unit	I Introduction to Organic Chemistry /Analytical Chemistry /Basic Chemical Engineering	(04)			
	Introduction to Green Chemistry: Principles of Green Chemistry, Reasons for Green Chemistry (resource minimisation, waste minimisation, concepts). Green				
Unit	reactions, MW/ Ultrasound mediated reactions, Bio catalysts etc	(08)			
	Introduction to Pharmaceutical Process Chemistry: Introduction to				
Unit	³ process chemistry, the difference between synthesis and process,	(07)			
Unit	4 Rote design, Route optimization, DOE	(05)			
Unit	 Role of Analytical Chemistry in Process Chemistry Role of Process Safety in Process Chemistry: TH classification, MSDS, Thermal Hazards, Waste segregation and disposal 	(07)			
Unit	6 Scale-up aspects including PE in Process Chemistry: Case Studies; New Initiatives : Micro reactors.	(06)			
9					
	se Outcomes (CO): At the end of course students will				
1. Un	derstand the principles of green chemistry and engineering				
2. Design processes those are benign and environmentally viable					
3. Des	3. Design processes and products those are safe and hazard free				
 Lea accept 	arn to modify processes and products to make them green safe and economically able.				
5. Ap	ply the principles of green technology to specific industrial processes				
Refer	ence Books				
1	James H.Clarke & Duncan Maacquarrie, Handbook of Green Chemistry and Technolog edition (2002)	y, Wiley-Blackwell; 1			
2	Paul T.Anastas and John C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, USA (2000)				
3	M.Lancaster, Green Chemistry (Paperback), Royal Society of Chemistry; 1 edition (2002)				
4	Stanley E.Manahan, Green Chemistry and the Ten Commandments of Sustainability, 2nd ed (Paperback), ChemChar Research Inc (2005)				
5	Albert Matlack, Introduction to Green Chemistry (Hardcover), CRC Press; 1 edition (20	001)			
6	Green Chemistry in the Pharmaceutical Industry, Peter Dunn (Editor), Andrew Wells (E Williams (Editor), Wiley-VCH (2010)	Editor), Michael T.			
7	Kenneth M.Doxsee and James Hutchison Green Organic Chemistry: Strategies, Tools, and Laboratory Experiments (Paperback), Brooks Cole; 1 edition (May 7, 2003)				

TatyasahebKore Institute of Engineering & Technology, Warananagar	
First Year M Tech Chemical Semester- I	

Elective-II	: Ch-PE-1041	Pharmaceutical	Biotechnology
	• CH-I L-IV-I	1 mai maccuncai	Diotechnology

Elective-II : Ch-PE-1041: Pharmaceutical Biotechnology							
Teachir	Teaching Scheme Examination Scheme						
Lectures	s	03 Hrs/Week			ISE		40 Marks
Tutorial	s				ESE		60 Marks
Total C	redits	03			TW		
					Duration of	ESE	•
Course	e Objec	tives (CO):					
1. To ur	nderstar	nd and evaluate	the different pharmace	utical parameters of the o	current and	future b	iotechnology
related p	oroducts	s on the market					
2. Bioted	chnolog	y products and th	heir use in therapeutics an	d diagnostics will be discus	ssed. Theady	vantages	of these products
over con-	ventiona	l drugs will also	be discussed				
3. To Do	evelop s	skills in biotech	nological techniques fo	or obtaining and improvin	ng thequalit	ty of nat	ural products.
4. Impai	ts Imou	ladge of Piopr	nies, diosensors, Diagn	ostic Kit.			
5.mpar	ts know	ledge of blopro	Course Cont				Hours
	Drug	Davalonmont in	Dharmacoutical Drocoss	Production of pharmaca	uticals by		nours
Unit 1	genetic for pro antibic	cally engineered oduction of im ptics)	d cells (hormones, interf portant pharmaceuticals	Ferrons) - Microbial trans (steroids and semi-syn	formation thetic		(07)
Unit 2	Techn drug d	iques for develo esign, drug targ	opment of new generation eting.	on antibioticsl,Protein eng	gineering,		(06)
Unit 3	Diseas vaccin	e Diagnosis and e,Gene Therapy	d Therapy,ELISA and hyb ,, Toxicogenomics.	pridoma technology,DNA			(06)
Unit 4	Proteo	mics in Drug D	evelopment,Role of Prot	eomics in Drug Developn	nen.		(05)
Unit 5	Diagno proteir	osis of disease l n analysis,Devel	by Proteomics,Separatio lopment of antibody base	n and identification techned protein assay for diagnee	niques for osis.		(06)
Unit 6	Diagr bioser micro	nosis and Kit D nsors for rap panalysis.	Development,Use of enzy bid clinical analysis,D	ymes in clinical diagnosi Diagnostic kit developi	is, Use of ment for		(06)
Course	e Outco	omes (CO): At	the end of course stud	ents will			
1. Unde	erstand t	he various tech	nniques used in modern	biotechnology.			
2. Desig	2. Design research strategy with step by step instructions to address a research problem						
3. Provide examples of current applications of biotechnology and advances in the different areas like medical, microbial, environmental, bioremediation, agricultural, plant, animal, and forensic							
4. Demo	onstrate	and Provide ex	xamples on how to use	microbes and mammalia	n cells for		
the prod	uction of	of pharmaceutic	cal products.				
5. Expla	ain the g	general principl	es of generating transge	enic plants, animals and	microbes		

Refe	rence Books
1	Balasubramanian, Bryce, Dharmalingam, Green and Jayaraman (ed), Concepts in Biotechnology, University Press, 1996
2	Epenetos A.A.(ed), Monoclonal antibodies: applications in clinical oncology, Chapman and Hall Medical, London

	Tot	washah Kara Instituta of Engineering & Technolog	Wanananagan			
	1 at	asaned Kore Institute of Engineering & Technolog	çy, warananagar			
		First Year M.Tech Chemical Engineering Sen	nester- I			
		Elective-III :PE- 1051: Bio Process Engine	eering			
Teaching Scheme Examination Scheme						
Lectures	s 03 Hrs/W	eek	ISE	40 Mar	ks	
Tutorial	s		ESE	60 Marl	KS	
Total Ci	redits 03		TW	-		
			Duration of ESE	•		
Course	Objectives (CO):	1			
1. Appl	y engineering prin	ciples to address issues in bioprocesses				
2. Analy	yze and identify l	miting factors in a bioprocess and Propose solution	ns to address			
biologic	al and engineering	g problems				
3. Expla	in the aerobic an	l anaerobic fermentation processes				
4. Desci	ribe applications	and solve problems relating to the use of enzymes t	for industrial			
bioproce	essing	r i Siri Siri Siri Siri Siri Siri Siri				
5 Deter	mine and analyz	e Mass transfer in heterogeneous biochemical read	tion systems			
yith prov	coss parameter	i wass transfer in neurogeneous bioenennear reac	tion systems			
6. Impro	ove chemical para	meters in bioreactors		r		
Course Contents Ho						
Unit 1	Review of fund	amentals of microbiology and biochemistry. Biop	rocess principles: K	linetics	(06)	
	of biomass production. Substrate utilization and product formation.					
II*4 A	Batch and cont	nuous cultures. Fed batch culture introduction.	Fermentation proc	cesses.	(0)	
Unit 2	General requirements of fermentation processes.				(06)	

	An overview of aerobic and anaerobic fermentation processes. Examples of simple and						
T.mit	complex media. Design and usage of commercial media for industrial fermentation. Thermal	(06)					
Umt	death kinetics of microorganisms. Heat sterilizations of liquid media. Filter stabilizations of	(00)					
	liquid mediaand air.						
	Enzyme technology- Microbial metabolism enzymes classification and properties. Applied						
Unit	4 enzyme catalysis-kinetics of enzyme catalytic reaction. Metabolic pathways. Protein synthesis in	(06)					
	cells. Bioreactor design and operations. Selection scale up operations of bioreactors.						
	Mass transfer in heterogeneous biochemical reaction systems. Oxygen transfer rates and						
Unit	5 coefficients. Role of aeration and agitation in oxygen transfer. Heat transfer processes in	(06)					
	biological systems. Recovery and purification of products.						
	Introduction to instrumentation and process control in bioprocesses. Measurement of physical						
Unit 6	and chemical parameters in bioreactors. Monitoring and control of dissolved oxygen, pH,						
	Impeller speed and temperature in a stirred fermenter						
Cou	rse Outcomes (CO): At the end of course students should be able to						
	1. Understanding of biological basics and bioprocessing						
	2. Understanding the difference between bioprocesses and chemical processes						
	3. Bioprocess design and operation						
	4. Choice of bioreactor						
	5. Heat & mass transfer considerations and scale up of bioprocesses						
6. Introduction to bioprocess monitoring/control							
Text	Books						
1	1 M. L. Shuler, F. Kargi. Bioprocess engineering. 2nd edition. PHI. New Delhi. 2002.						
1	I J. E. Bailey, D. F. Ollis. Biochemical engineering. 2nd edition. Mc Graw Hill Publication co.NY.1985						
2	Pauline M. Doran, Bioprocess Engineering Principles, Academic Press, 2001						

	T	atyasaheb Kore Ins	stitute of Engineering & Technology, Waranan	agar				
First Year M. Tech Chemical Engineering Semester- I								
		Elective	-III: PE- 1051: Material Engineering					
Teaching Scheme Examination Scheme								
Lecture	Lectures 03 Hrs/Week ISE 40 Mar							
Tutorial	rials ESE 60 Mark				ks			
Total C	redits 03		TW					
			Duration of	of ESE .				
Course	e Objectives (C	20):	· · · · ·					
1. Expla	in the engineer	ing materials charac	terization					
2. Expla	ain Metallic phas	ses and their proper	ties					
3. To ui	nderstand the p	rinciples of optica	l and electron microscopy for study of macro	and micro-				
structure	e of materials.							
4. Inspe	ct properties the	ough change in va	rious parameters over composite materials					
5. To ga	ain knowledge	in understanding t	he tools and techniques for studying the subs	structure and				
	atomic s	tructure of materia	ls					
6. To bu	uild an expertise	in characterizatio	n of engineering materials.					
			Course Contents		Hours			
	Engineering red	quirement of materia	als, atomic bonding, atomic arrangements, structur	al imperfections				
Unit 1	and atom move	ments, electronic str	uctures & process binary alloys and equilibrium dia	agrams.	(06)			
Unit 2	Metallic phase	s and their properti	es, phase transformations in iron carbon system.		(06)			
	Heat treatmen	t, surface hardenii	ng, case hardening metals and their alloys, org	ganic materials				
Unit 3	& their prope	rties, ceramic phas	es and their properties, multiphase materials, r	eactions within	(06)			
	solid materials.							
	Modification of properties through change in microstructure, corrosion, oxidation, thermal							
Unit 4	stability, radia	tion damage, com	posite materials		(08)			
	Crystallograph	y, X-Ray Diffracti	on Methods, Reitveld Refinement, Neutron Di	ffraction, X-ray				
Unit 5	absorption, XRay Fluorescence spectroscopy, Electron Diffraction- diffraction pattern in specific				(06)			
	modes.							

	LEED and RHEED, Electron Optics, Electron Microscopy-Transmission and Scanning Electron					
Unit	6 Microscopy, STM and AFM, Compositional analysis employing AES, ESCA and Electron Probe (06)					
	Microanalysis.					
Cou	rse Outcomes (CO): At the end of course students should be able to					
1. To	review physics and chemistry in the context of materials science & engineering					
2. To	describe the different types of bonding in solids, and the physical ramifications of these differences					
3. To	describe and demonstrate diffraction, including interpretation of basic x-ray data.					
4. To	promote an understanding of the relationship between material structure, processing and properties					
5. Gai	in important conceptual and operational understanding of a wide range of methods for					
	characterizing Materials					
6. Gai	ined a broad perspective on materials chemistry and physics					
Refe	rence Books					
1	James E. Shackalford Introduction to Materials Science for Engineers. 7th Edition, Pearson Prentice					
1	James F. Shackenord, Introduction to Materials Science for Engineers, /in Edition, Fearson Frence					
	Hall(2009)					
2	W. D. Callister, Fundamentls of Materials Science and Engineering, Wiley (2007)					
3	C. Kittle, Introductin to Solid State Physics, Wiley (2007)					
4	R. W. Cahn and P. Haasen, Physical Metallurgy, North Holland (1996)					
5	5 Bradley D. Fahlman Materials Chemistry, Kindle Edition 2008).					
6	 B.D.CullityElementS of X-ray Diffraction AddisionWesely Reading Mass 1978. 					
7	David D. Brandon and Wayne D. Kaplan Microstructural Characterization of Materials wiley					
8	Dawn Bonnel Scanning Probe Microscopy and Spectroscopy: Theory, Techniques, and Applications 2000.					
9	C. Julian Chen Introduction to Scanning Tunneling Microscopy Monographs on the Physics and					
	Chemistry of Materials					

Tatyasaheb Kore Institute of Engineering & Technology, WarananagarFirst Year M. Tech Chemical Engineering Semester- IElective-III :Ch – PE – 1051 : Process and Equipment Design

Teachi	Teaching Scheme Examination Scheme						
Lecture	s	03 Hrs/Week			ISE	40 Mar	ks
Tutorial	ls				ESE	60 Marks	
Total Credits		03			TW		
					Duration of ESE	•	
Course	e Obje	ctives (CO):					
	1	Define and des	cribe the basic desi	gn procedure for an equipr	nent.		
	2	Explain the use of	of formula and corre	elations used for designing	of equipment.		
	3	Develop skills	to make appropriate	e assumptions and ability t	o predict the data requ	ired for	
designi	ng.						
-	4	Analysis and est	imation of predicte	ed data with calculated value	les.		
	5 J	udge the design	parameters along w	vith the permissible design	guidelines.		
	6 I	Discuss about tria	al and error estimati	ions.			
	Course Contents						Hours
	Shell	and Tube Heat	t exchanger : Class	sification, Shell and Tube	side Heat Transfer		
Unit 1	Coefficients, Pressure drop, Fouling, Baffles, Passes Tubes Tube Sheet, Effectiveness, of						
	Heat	exchanger, Heat	Exchangers sizing	g For Heating or Cooling	in agitated vessel.		
TI	Heat Exchange equipment: Plate Heat Exchanger, Bayonet Heat Exchanger, Heat						
Unit 2	Regenerator, Thermic Fluid Heating System Design Consideration.						
	Heat Exchange equipment: Cooling Tower Design Consideration, Cooling Water Blow						
Unit 3	Down, Cooling Water Corrosion, Crossed flow induced Draft Cooling Tower, Evaporation,						(06)
	Single and Multiple Effect forward and Backward Feed Evaporators.						
Unit 4	Reac	tor: Reactor Cla	ssification, Desigr	n Equation for Batch PFR	and CSTR, Fluidized	Bed	(06)
	React Sena	or, Scale Up.	ent: Classifications	s of Separator Design Pro	cedure		
	For Cas Liquid Separator Oil Water Separator Deserter Crewity Separators Contrifused					(06)	
Unit 5	For Gas Liquid Separator OII water Separator, Decanter, Gravity Separators, Centrilugal						
	Bed Eilter, Hudro evalore						
				an Condensate Dirig Di	a Currant Derie	c	
TT •	Pipe	imes: Pipe Inici	kness, Pipe diamet	er, Condensate Piping, Pi	pe Support, Design of	L	
Unit 6	Pipeline for Natural Gas, Transportation of Crude oil, Pipe Line in Sea Water, Pipeline						(06)
	Design on Fluid Dynamics Parameters.						

Cou	rse Outcomes (CO): At the end of course students should be able to
1 Rec	all their concepts in designing the chemical equipments
2 Inte	erpret causes of failure of chemical equipment
3 Hav	ve awareness on advances in process engineering design of many process equipments
4.Tak Guide	te part in remedial or preventive measurements to avoid failure of vessel with safe design e lines
5 Eva	luate and apply their ideas on dimensional analysis to explore the optimum design variables
6 Tes	st the process equipment with prior safety.
Text	Books
1	Process Design Of Equipments Vol1, 4th Edition by Dr. S .D. Dawande, Denett & Company Publication 2011
2	Process Design Of Equipments Vol2, 4th Edition by Dr. S. D. Dawande, Denett & Company Publication 2012
Refe	rence Book
1	Introduction to Process Engineering and Design 4th Reprint 2011, S. B. Thakore, B. I. Bhatt, Tata Mc Graw Hill, Education Pvt. Ltd, Delhi
Usef	ul Websites
1	http://nptel.ac.in/
2	http://swayam.gov.in/
3	http://www.youtube.com/user/nptelhrd

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar								
	First Year M.Tech Chemical Engineering Semester- I							
CH-LC-1061: ADVANCED SEPARATION LABORATORY								
Teaching Sch	eme		Examination Sch	eme				
Lectures			ISE					
Tutorials			ESE (Oral)	25				
Practical	02Hrs/Week		TW	25				
Total Credits	02		Duration of ESE					
Course Obje	Course Objectives (CO):							
	1.Learn new techniques of separation							
2.Learn possible cases of industrial application.								
	3. Lear	n estimation of separation coefficient.						

	Course Contents	Hours					
1	Ultrafilteration a) Pilot scale	(04)					
2	Ultrafilteration a) Small scale	(04)					
2	Supported liquid membranes.	(04)					
3	Microfiltration of raw material	(04)					
4	Ion Exchange a) Resin	(04)					
5	Ion Exchange b) Equillibria	(04)					
6	Ion Exchange c) Column	(04)					
7	Electro coagulation	(04)					
8	Pressure swing Adsorption	(04)					
9	Electrostatic precipitator	(04)					
Cou	rse Outcomes (CO): At the end of course students will get						
1.Kno	wledgeof recent advances in separation techniques						
2. Abi	2. Ability to separate different chemical compounds.						
3. Abi	lity to handle different advance equipments.						
4.Con	siderably more in-depth knowledge of the major subject.						
5.Dee	per knowledge of Experimental methods						
6. Kno	owledge of industrial methods used for the separation processes.						
Refe	rence Books						
1	C.J.King "Separation Processes" 2nd Ed., Tata McGraw Hill Publishing Co. Ltd.,	New Delhi, 1986.					
2	Sirkar K. & Winston H.O. "Membrane Hand Book" Van Nostrand Reinhold, New York, 1992.						
3	McCabe & Smith "Unit Operations of Chemical Engineering" 5th Ed., McGraw Hill International .						
4	Richardson and Coulson, "Chemical Engineering Volume -II", Pergamon Press, 19	70.					
5	Schweitzer P.A, "Handbook of Separation Techniques for Chemical Engineering"	'2nd edn.,McGraw Hill					
	Book Co.,1986.						
6	Souri Rajan S. "Reverse Osmosis" Logos Press Ltd.						

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar								
	First Year M.Tech. Chemical Engineering Semester- I							
	Ch - SW - 1071: Seminar – I							
Teaching Sche	Teaching Scheme Examination Scheme							
Lectures			ISE					
Tutorials			ESE (Oral)					
Practical 02Hrs/Week TW 50				50				
Total Credits	Fotal Credits 01 Duration of ESE							

Course Objectives (CO):
1 To Identify understand and discuss current real-world issues

2. To Distinguish and integrate differing forms of knowledge and academic disciplinary approaches (e.g.,

humanities and sciences) with that of the student's own academic discipline (e.g., in agriculture, architecture, art, business, economics, education,

engineering, natural resources, etc.). And apply a multidisciplinary strategy to addresscurrent, real-world issues.

3. To Improve oral and written communication skills.

4. To Improve presentation skills

Course Contents
Seminar-I should be based on the literature survey on any topic relevant to Design Engineering (should be helpful for selecting a probable title of the dissertation). Each student has to prepare a write up of about 25-30 pages of "A4" size sheets and submit it in IEEE format in duplicate as the term work. The student has to deliver a seminar talk in front of the faculty of the department and his classmates. The concerned faculty should assess the students based on the quality of work carried out, preparation and understanding of the candidates. Some marks should be reserved for the attendance of a student in the seminars of other students.

Course Outcomes (CO): At the end of course students will

1. Apply principles of ethical leadership, collaborative engagement, socially responsible behavior, respect for diversity in an interdependent world, and a service-oriented commitment to advance and sustain local and global communities.

2. Learn and integrate. Through independent learning and collaborative study, attain, use, and develop knowledge in the arts, humanities, sciences, and social sciences, withdisciplinary specialization and the ability to integrate information across disciplines.

3. Think and create. Use multiple thinking strategies to examine real-world

issues, explore creative avenues of expression, solve problems, and make consequential decisions

4.Communicate. Acquire, articulate, create and convey intended meaning using erbal and non-verbal method of communication that demonstrates respect and understanding in a complex society.

SEMESTER-II

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar									
	First Year M.Tech. Chemical Engineering Semester- II								
	PCC-CH2011: Advanced Mass Transfer								
Teachi	Teaching Scheme Examination Scheme								
Lecture	s	03 Hrs/Week			ISE		40 Marks		
Tutoria	ls	01 hr/Week			ESE		60 Marks		
Total C	redits	04			TW		25 Marks		
					Duration of	f ESE	•		
Course	Objecti	ives (CO):	<u> </u>		1				
	Introdu	ce fundamentals	of macroscopic and microsc	opic models of chemica	l process sys	stems.			
2	Compai	e and classify va	rious mass transfer operatio	ns with or without chem	11cal reaction	1. 	fahamiaal		
3	solve p	rocess design pro	blems, based on fundament	al analysis and using ma	amematical	models o	i chemical		
4	Implem	entation on math	ematical predictions for mu	lti-component system.					
5	Explain	Extraction, ion-	exchange, adsorption proces	ses.					
	Cours	e Contents				Hours			
	Physical-Chemical Phenomena: Diffusivity and mechanism, Diffusion dispersion,								
	Diffusivity measurements and prediction in non- electrolytes and electrolytes,					(06)			
Unit 1	solubility of gases in liquids, Inter-phase mass transfer in two phase and multi								
	component system.								
	Mass t	transfer with Cl	nemical reaction: Fluid-flui	id reactions involving di	ffusion				
	transfe	r, application of	mass transfer to reacting sys	stems Residence time di	stribution				
Unit 2	analysis, mass transfer coefficients, determination and prediction in dispersed					(06)			
Unit 2	multiphase contractors under the conditions of free forced convection, prediction of								
	mean o	mean drop or bubble size of dispersion.							
	Conto	ating doviage C	anagity and officiancy another	w raquiramente of ano	ration				
	proces	cuing uevices? C	apacity and efficiency, energy	gy requirements of separ	auon				
Unit 3	Extrac	s. tive distillation	Reactive distillation cryoge	nic distillation and mole	cular	(06)			
Chite	distillation.				(00)				
	Multic	component disti	llation: Mass transfer mode	ls, Binary distillation in	tray				
Unit 4	colum	ns, Multicompon	ent distillation tray column,	Distillation in packed c	olumn –	(06)			
	Non-equilibrium models, solving the model equations, Design studies of De-			X/					
	propar								

Unit :	 Adsorption, Ion exchange and chromatography: Adsorption, equilibrium considerations, pure gas adsorption, liquid adsorption, Ion exchange equilibrium, equilibrium in chromatography, Kinetic and transport considerations, external and internal transport, mass transfer in ion exchange and chromatography. 	(06)				
Unit	 Extraction: Supercritical fluid extraction, Supercritical fluid, phase Equilibria, industrial applications, residuum oil Supercritical process – decaffeination of coffee, extraction of oil from seeds, residual oil Supercritical application (ROSE), Supercritical fluid chromatography. 	(06)				
Cours	se Outcomes (CO): At the end of course students will					
1.	Define various operations like distillation, extraction, leaching, Compare and classify various operations with or without chemical reaction	rious mass transfer				
2.	Design calculation of distillation column for the multi-component system					
3.	Analyze the problem of Separation by adsorption and design of absorber, chromatograp	phic separation				
4.	Evaluate the separation by liquid extraction, leaching used and justify the extract opera problem	tion to choose for specific				
5.	Estimate final data for designing number of stages, Height of column in the operations					
6.	Define various operations like distillation, extraction, leaching					
Text	Text Books					
1	"Separation process" by J. Sieder and Henley, Wileypublishers, 1998					
2	"Principles of Mass Transfer and Separation Process" Binay K Datta, EEE, PHI Pvt Ltd.					
3	"Unit operation in Chemical Engineering" 6 TH edition, McCabe Smith, Mc Graw Hill					
4	4 "Mass Transfer Operations" by Trebyal, McGraw Hill					
5 "Mass Transfer Fundamentals and Applications", Anthony L. Hines & Maddox.						
Reference Books						
1	1 "Transport Separations and Unit Operations" 3 rd edition, G.J.Geankoplis, Prentice Hall.					
2	"Seperationprocess" by C. Judson King, McGrawHill, 1982					
3	"Distillation", Matther Van Winkle, Mc Graw Hill, Book Company					
Usefu	l Websites					
1	Moocs/ Swayam/NPTEL Courses on Mass Transfer Operations I					

	Tatyasaheb Kore Institute of Engineering & Technology, Warananagar				
		First Year M.Tech. Chemical Engineering S	emester- II		
		M.Tech . (Chemical Engineering), Sem. Ch-PCC-2021 Chemical Process Control	-II		
Teachin	g Scheme		Examination Sch	neme	
Lectures	03 Hrs/Week		CIE	40 Marks	
Tutorial	s 01 hr/Week		ESE	60 Marks	
Total Credits	04		TW Duration of ESE	25 Marks 02 Hrs. 30 Min.	
Course	Objectives (CO):				
1. (CO1: Develop structur	ed, logical control schemes for complex processe	es.		
2. 0	CO2: Study dynamics	of process and control behaviour.			
3. 0	CO3: Choose control c	onfigurations for standard operations.			
4. 0	CO4. Estimate controll	of controller that can be used for specific proble	m in chemical indu	stry	
6.0	COS: Onderstand type	ntrol systems		stry.	
0.1 (Course Contents			Hours	
	Introduction To Fe	eed Back Control: Concept of feedback Contr	ol.		
	Types offeedback Controllers. Measuring Devises. Transmission				
	Lines. Final Controll				
Unit 1	Dynamic Behavior	(06)			
	looped response effect of P Control I Control D Control and Composite Control				
	Action on response of a controlled process.				
	Action on response of a controlled process.				
 Mass transfer with Chemical reaction: Fluid-fluid reactions involving diffusion Stability Analysis Of Feedback System: Notion of Stability, the characteristics equation, Routh–Hurwitz Criterion for stability, Root locus analysis. Unit 2 Design Of Feedback Controller: Outline of Design Problem, Simple Performance Criteria, Time integral performance criteria, Select the type of feedback Controller, Controller tuning 				(06)	
Unit 3Frequency Response Analysis Of Linear Process: Response of First Order System to Sinusoidal input, frequency response characteristics of a general linear system, Bode Diagram, Nyquist Plots. Design Of Feedback Control System Using Frequency Response Technique Bode Stability Criteria, Gain and Phase Margin, Ziegler- Nicholas Tuning Techniques, Nyquist Stability Criteria.				(06)	

Un	Jinit 4Feed Back Control Of System With Large Dead Time Or Inverse Response : Processes with Large dead time, Dead Time compensation, Control of System with Inverse response. Control System With Multiple Loop: Cascade Control, Selective Control System, Split Range Control.		(06)			
Unit 5Feed Forward And Ratio Control: Logic of Feed Forward Cont Designing feed forward controllers, Pretical Aspect on Design of controllers, Feed forward- Feed Back Control, Ratio Control.Maptive and Inferential control system: Adaptive Control, Inf Introduction To Plant Wide Control:Plant Wide Control issue plant for Plant wide control Studies, Internal Feedback of Mater Interaction of Plant Design and control system design.		 Feed Forward And Ratio Control: Logic of Feed Forward Control, Problem of Designing feed forward controllers, Pretical Aspect on Design of Feed forward controllers, Feed forward- Feed Back Control, Ratio Control. Adaptive and Inferential control system: Adaptive Control, Inferential Control Introduction To Plant Wide Control:Plant Wide Control issues, Hypothetical plant for Plant wide control Studies, Internal Feedback of Material and Energy, Interaction of Plant Design and control system design. 	(06)			
Unit 6		 Plant Wide Control System Design: Procedures for Designs of Plant wide control systems, A Systematic procedure for plant wide control system design, Case studies: The Reactor Flash Unit Plant, Effect of Control Structure on Closed looped performance. Digital Process Control System: Hard ware and Software, Distributed Digital Control System, Analog and Digital Signals and Data transfer, Microprocessors and Digital Hardware in Process Control, Software Organization. 	(06)			
Reference Books Chemical Process Control An Introduction To Theory And Practice- George Stephanopolous, Prentice Hall Of						
1	India, New Delhi2003					
2	Proc	Process Dynamics And Control, Dale E Seborg, Yhomas F Edgar, Duncan A, Mellichamp- Wiley India2006				
3	Process Control Modeling, Design And Simulation, B.Wayne Beqnette, Prentice Hall Of India, New Delhi2004					

	Tatyasaheb Kore Institute of Engineering & Technology, Warananagar					
	First Year M.Tech. Chemic Electiv	al Engineering Semester- II ve - IV				
	Ch-PE-2031 Moder	n Reaction Engineering				
Teachi	ng Scheme	Examination	n Scheme			
Lecture	s 03 Hrs/Week	CIE	40 Marks			
Tutorial	ls	ESE	60 Marks			
Total C	redits 03	TW				
		Duration of H	ESE .			
Course	Outcome:					
CO1: T	o understand the principles of designing reactors					
CO2: T	o evaluate reaction rates in different types of reactors	8				
CO3: 10	o understand the design and operation of catalytic rea	actors				
C04:10	o design and modify rectors to make processes sale a	ind efficient	and comi hotoh			
reactors	to determine selectivity and yield.	ny and non-isothermany in now, bater	rand senir batch			
CO6: D	escribe the steps in a catalytic mechanism and how o	one goes about deriving a rate law, med	chanism, and rate-			
limiting	step that are consistent with experimental data.					
	Course Contents		Hours			
Unit 1	A brief review of Chemical kinetics and Ideal react	or.	(06)			
	Non Ideal flow and mixing: Mixing concept, RTI	D, Response measurement,				
Unit 2	segregated flow model, Dispersion model, Tank in	Series model, recycle rector	(06)			
	model, analysis non ideal reactor.					
Unit 3	(06)					
Eluid golid Non Cotolutio reaction: Sinking core model untrooted core model						
Unit 4	kinetics of non catalytic reaction for spherical and	cylindrical solid particles	(06)			
Cimt i	Contacting patterns, Reactor design.					
	Fluid-Fluid Reaction: Gas-liquid reaction, practic	al ability of film theory, kinetic				
Unit 5	5 regime identification, kinetics of fluid-fluid reaction, Contacting patterns, Reactor		(06)			
	design.					

Unit	 Catalysis and Catalytic reaction: Classification of catalysis, surface area measurement, BET theory, pore size distribution, adsorption, adsorption isotherm, Internal and External transport in pore catalyst, effectiveness factor and their modules, Effect of internal transport on selectivity, Catalyst deactivation, poison, Sintering of catalyst, and uniform posing model, Mechanism and kinetics of deactivation, catalyst regeneration. 	(06)		
	Design of heterogeneous catalyst: Isothermal and adiabatic fixed bed reactors, non- isothermal, non-adiabatic fixed bed reactor, Introduction to multiphase reactor design, two phase fluidized bed model, slurry reactor model, trickle bed reactor model.			
Refe	rence Books			
1	Octave Levanspeil, Chemicaal Reaction Engineering, Jhon Wiley, London			
2	2 S.M.Walas, Reaction Kinetics for Chemical Engineers, McGraw Hill, New Yark			
3 J.M.Smith, Chemical Reaction Kinetics, Mc GrawHill,1981				
4 Bischott and Fromment, Chemical Reactor Designandanalysis, Wesley-1982				
5	Fogler H.S, Ellement of Chemical Reactionengineering, prantice-hall19863			

	Tatyasaheb Kore Institute of Engineering & Technology, Warananagar				
		F	irst Year M.Tech. Chemical Engineering Seme	ster- II	
			Elective – IV		
		(Ch-PE – 2031 Catalysis and Surface Phenome	ena	
Teachir	ng Sche	me		Examination	1 Scheme
Lectures	S	03 Hrs/Week		CIE	40 Marks
Tutorial	ls			ESE	60 Marks
Total Ci	redits	03		TW	
				Duration of E	ESE .
Co	urse Ou	utcome:-			
CO1: To	o unders	stand the concept	s of homogenous and heterogeneous catalysis, catal	ytic activity an	nd selectivity and the
relevanc	ce to gre	en chemistry and	l technology		
CO2: To	o unders	stand the kinetics	of homogenous and heterogeneous catalytic reaction	ons and catalytic	c cycles
CO3: To	o famili	arize with the syr	nthesis and characterization of catalysts		
CO4: To	o unders	stand the applicat	ion and mechanisms of several types of catalysts		
CO5: K	nowledg	ge of heat and ma	ass transfer effects on catalytic reactions.		
CO6: A	bility to	design different	types of reactors for conducting catalytic reactions.		
Course Contents					Hours
	Introduction of Catalysis : Classification of Catalysis - Homogeneous,				
Heterogeneous, Biocatalysts, Preparation of catalysis - Laboratory Techniques,					
Unit 1	1 Industrial methods, Transition models, Dual functional catalysts, Zeolites, Enzymes,			Enzymes,	(06)
	Solid Catalysts, Powder Catalysts, Pellets, Composition, Active ingredients.				
	Suppor	tive materials, Ca	italysts activation.		

Unit	 Catalysts Characterization: Surface area measurements, BET Theory, Pore size distribution, Porosimetry Chemisorption techniques, Static and dynamic methods, Crystallography and surface analysis techniques, XRD, XPS, ESCA, ESR, NMR, Raman and Masbauar spectroscopies, Surfaceacidityandtoxicity, Activity, Lifetime, Bulkdensity, Thermalstabilityetc. 	(06)				
Unit	 Theories of Catalysts: Crystal structure and its defects, Geometric and electronic factors, Analysis of transition model catalysis, Chemistry and thermodynamics of adsorption, Adsorption isotherms - Langmuir model, Tempkin model, Freundich model, Elovich equation, Langmiur Hinshel - wood model, Rideal - Eely mechanism, Reversible - irreversible mono and bimolecular reactions with and without inerts, Determination of rate controlling steps, Inhibition, parameter estimation. 	(06)				
Unit	 Mass and Heat Transport in Porous Catalysts :Internal and external transport, fixed bed, Fluidized bed reactors, Effect of internal transport on selectivity. Effectiveness factor and Thiele modulus. 	(06)				
Unit	 Catalyst Deactivation : Poisons, sintering of catalysts, Pore mouth plugging and uniform poisoning models, Kinetics of deactivation, Catalyst regeneration. 	(06)				
Unit	 Industrial Catalysis :Industrial catalysts preparation methods, Typical industrial catalytic processes, Case studies, Catalytic deactivation prevention methods, New techniques for catalyst characterization, Overall study. 	(06)				
Refe	ence Books Emmett, P.H "Catalysis Vol. I and II, Reinhold Corp.", New York, 1954.					
2	"Smith, J.M "Chemical Engineering Kinetics ", McGraw Hill, 1971.					
3	Thomas and Thomas - "Introduction to Heterogeneous Catalysts ", Academic Press, London 1967					

	Tatyasaheb Kore Institute of Engineering & Technology, Warananagar				
		First Year M.Tech. Chemical Engineering Semes	ster- II		
		Elective – IV			
		Ch-PE-2031 Down Stream Processing			
Teachi	ng Scheme		Examinatio	n Scheme	
Lecture	s 03 Hrs/Week		CIE	40 Mark	S
Tutoria	ls		ESE	60 Marks	
Total C	redits 03		TW		
			Duration of	ESE .	
Co	urse Outcome:-				
CO1: U	nderstanding the funda	mentals of downstream processing for biochemical pr	oduct recover	у.	
CO2: A	ssessing the impact of	change on overall process performance			
CO3: E	xamining traditional u	it operations, as well as new concepts and emerging t	echnologies t	nat are likely to be	nefit
biochen	nical product recovery	in the future.			
CO4: U	nderstanding analytica	and process validation issues that are critical to succe	essful manufa	cturing	
CO5: St	trategies for biochemic	al process analysis and synthesis.		-	
CO6: D	esign and operation of	unit processes with centrifugation, chromatography, f	iltration, and	membrane process	ses
	Course Contents			Hours	
	Requirement of Dov	Anstream Processing : Basic concepts of separation			
	Technology, Overview of a bioprocess including upstream and downstream			(06)	
	processing, Importan				
Unit 1	characteristics of bio				
	biotechnology; Separ				
	& other biological pr	operties; Selection of purification methodologies,			
	Characteristics of fer	nentation broth & its pretreatment.			
	Biomass Removal a	d Disruption: Biomass removal and disruption: Cell			
Unit 2	disruption by Mecha	ical and non mechanical methods, Chemical lysis,		(06)	
	Enzymatic lysis, phy	ical methods, Sonication, Types of Homogenizers,			
	Riomass Removal a	d Disruption : Biomass removal and disruption: Cell			
	disruption by Mecha	ical and non mechanical methods. Chemical lysis			
Unit 3	Enzymatic lysis phy	ical methods Sonication Types of Homogenizers		(06)	
	Centrifugation; Sedin	nentation; Flocculation.			
	Membrane Based S	paration: Membrane based purification: icrofiltratio	n,		
	Ultrafiltration, Reven	se osmosis (UF and RO); Dialysis; Electrodialysis;			
T	Diafiltration; Perv	poration; Perstraction, Biotechnological application,			
	Structure and charact	eristics of membranes; Liquid membranes; Supported	liquid	(06)	
01111 4	membrane; Membran	ereactors. RO); Dialysis; Electrodialysis; Diafiltration	ı;	(00)	
	Pervaporation; Perstr	ction, Biotechnological application, Structure and			
	characteristics of me	nbranes; Liquid membranes; Supported liquid membr	ane;		
	Membranereactors				

Unit	 Separation by Adsorption and Chromatography: Types of adsorption; adsorbents types, their preparation and properties, Types of adsorption isotherms and their importance; Chromatography: general theory, partition coefficients, zone spreading, resolution and plate height concept and other chromatographic terms and parameters; chromatographic method selection; selection of matrix; separation based on size, charge, hydrophobicity and affinity: Gel filtration, Ion exchange chromatography; Reverse phase chromatography (RPC) and hydrophobic interaction chromatography (HIC), HPLC, role of HPLC in protein characterization; Chromatofocussing; Polishing of Bioproducts by Crystallization of small and large molecules, drying andFormulations. 	(06)				
Unit	 Case Studies :Baker's yeast, Ethanol, Power alcohol, Citric acid, Intracellular proteins, Penicillin, Streptomycin, Insulin, Casein, interferon, Large scale separation and purification of <i>E.coli</i>, yeast, Recombinant products. 	(06)				
D.C.						
Refe	ELV Harris and S. Angal. Protein Purification Methods. Ed. IRL Press at Oxford University	tv Press 1989				
2	P.A. Belter, E.L. Cussler and Wei-Shou Hu., Bioseparations-Downstream Processing for Biotechnology, Wiley- Interscience Publication,1988.					
3	J.E.Baileyand D.F.Ollis, BiochemicalEngineeringFundamentals, 2ndEdition, Mc-Graw Hill, Inc., 1986					
4	ComprehensiveBiotechnology"Vol.2Ed.:M.Moo-Young(1985)					
5	Seperation, Recoveryand Purificationin Biotechnology, Aenjo J.A.and J.Hong					
6	Priniciples of fermentation technology" by P F Stanbury and A Whitaker, Pergamonpress (1984)					
7	"Biotreatment, Downstream Processing and Modeling" (Advances in Biochemical Engineering/Biotechnology, Vol 56) by T. Schepleretal,Springer Verlag					
8	Downstream Processing" by J.P. Hamel, J.B. Hunter and S.K. Sikdar, American Chemical Society					
9	Protein Purification" by M.R. Ladisch, R.C. Wilson, C.C. Painton and S.E. Builder, American Chemical society, Verlag					
10	Chromatographic and Membrane Processes in Biotechnology" by C.A. Costa and J.S. Cabral, Kluwer, AcademicPublisher					
11	Protein purification: Principle and practice, third edition, Robert k. Scopes, Springer, editor: Charles R.Cantor					

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar

First Year M.Tech. Chemical Engineering Semester- II

Elective – IV

Ch-PE-2041 COMPUTATIONAL FLUID DYNAMICS

CII-FE-2041 COMPUTATIONAL FLUID D'INAMICS						
Teachir	Teaching Scheme Examination Scheme					
Lectures	s 03 Hrs/Week		CIE	40 Marks		
Tutorial	s		ESE	60 Marks		
Total C	redits 03		TW			
			Duration of E	ESE .		
Co	urse Outcome:-					
CO1: Pr	ovide the student with fluid-flow systems.	a significant level of experience in the use of modern	CFD software	for the analysis of		
CO2: U	nderstand solution of a	erodynamic flows. Appraise & compare current CFD	software. Sim	plify flow problems		
and solv	ve them exactly			F) F		
CO3: D	efine and setup flow p	oblem properly within CFD context, performing solid	modelling and	d producing grids via		
meshing	g tool		C			
CO4: U	nderstand both flow pl	ysics and mathematical properties of governing Navie	er-Stokes equa	tions and define proper		
boundar	ry conditions for soluti	on				
CO5: D	evelop an awareness o	f the power and limitations of CFD.				
CO6: Pl	ace CFD in the contex	t of a useful design tool for industry and a vital research	ch tool for ther	mos-fluid research		
across n	nany disciplines.					
	Course Contents			Hours		
	Governing Differential Equation And Finite Difference Method :					
Unit 1	Classification, Initial and Boundary conditions – Initial and Boundary Value problems			(06)		
0	– Finite difference method, Central, Forward, Backward difference.					
Unit 2	Unit 2 Uniform and non-uniform Cride Numerical Energy Crid Independence Test (06)					
Unit 2	Conduction Host Transfer					
	Steady one dimensional conduction two and three dimensional steady state					
Unit 3	problems. Transient one-dimensional problem. Two-dimensional Transient			(06)		
	Problems		L			
	Incompressible Flui	d Flow				
TT •4 4	Governing Equations	, Stream Function – Verticity method, Determination	of pressure	(0c)		
Unit 4	for viscous flow, SIMPLE Procedure of Patankar and Spalding, Computation of			(06)		
	Boundary layer flow, finite difference approach.					
	Convection Heat Tr	ansfer And Fem				
	Steady One-Dimensi	onal and Two-Dimensional Convection – d	iffusion,			
Unit 5	Unsteady one- dimen	sional convection – diffusion, Unsteady two-dimension	onal	(06)		
	convection –Diffusio	n – Introduction to finite element method – solution of	f steady heat	i		
	conduction by FEM	- Incompressible flow – simulation byFEM.				
	Algebraic Models –	One equation model, $K - \varepsilon$ Models, Standard and High	and Low			
Unit 6	Reynolds			(06)		
	number models, Pred	iction of fluid flow and heat transfer using standard co	aes.			

Refe	rence Books
1	Muralidhar, K., and Sundararajan, T., "Computational Fluid Flow and Heat Transfer", Narosa Publishing House, New Delhi,1995.
2	Ghoshdasdidar, P.S., "Computer Simulation of flow and heat transfer" Tata McGraw-Hill Publishing Company Ltd., 1998.
3.	Subas, V.Patankar "Numerical heat transfer fluid flow", Hemisphere PublishingCorporation, 1980.
4	Taylor, C and Hughes, J.B. "Finite Element Programming of the Navier-Stokes Equation", Pineridge Press Limited, U.K., 1981.
5	Anderson, D.A., Tannehill, J.I., and Pletcher, R.H., "Computational fluid USA, 1984
6	Fletcher, C.A.J. "ComputationalTechniquesfor Fluid Dynamics 1" Fundamental and General Techniques, Springer – Verlag, 1987.
7	Fletcher, C.A.J. "ComputationalTechniquesfor fluid Dynamics 2"Specific Techniques for Different FlowCategories, Springer – Verlag, 1987.
8	Bose, T.X., "NumericalFluidDynamics" NarosaPublishingHouse, 1997

	Tatyasaheb Kore Institute of Engineering & Technology, Warananagar				
			First Year M.Tech. Chemical Engineering Semester Elective – IV	er- II	
			Ch-PE-2041 Energy Engineering		
Teachi	ng Schei	me		Examination	Scheme
Lecture	s	03 Hrs/Week		CIE	40 Marks
Tutorial	ls			ESE	60 Marks
Total C	redits	03		TW	
				Duration of E	SE .
Co	urse Ou	itcome:-			
CO1: D	iscuss a	nd compare varie	bus types of energy resources and the principles for	converting from	n one form to another.
CO2: A	nalyse a	nd evaluate ener	gy use over the lifecycle of a product or project.		
CO3: C	ollect da	ata from thermod	ynamic systems and evaluate the performance of the	e system.	
CO4: E ⁻ and eco	valuate t nomic ii	he global consid	erations of energy production, management and cor n fuels.	servation inclu	iding the environmental
CO5: U recovery	nderstar y.	nding Energy ma	nagement methods. Rational energy consumption. I	Energy conserva	ation. Waste heat
CO6: U	nderstar	nding Energy con	nservation in industry.		
	Course Contents Hours				
Unit 1Energy, units of energy, conversion factors, general classification of energy, Historical Events, Energy requirement of Society in Past and Present situation, World energy resources and energy consumption, Indian energy resources and energy consumption, energy crisis, energy alternatives, future possibilities of energy need and availability, electrical energy from conventional energy resources, internal combustion engines, steam turbines, gas turbines, hydroturbines (thermodynamic cycles not included).(06)					

Unit	 Nuclear reactors, thermal, hydel and nuclear power plants (process outlines only), efficiency, merits and demerits of the above power plants, combined cycle power plants, fluidized bed combustion, small hydropower. 	(06)			
Unit	 Solar energy, solar thermal systems, flat plate collectors, focusing collectors, solar water heating, solar cooing, solar distillation, solar refrigeration, solar dryers, solar pond, solar thermal power generation, solar photovoltaic systems, solar cells, solar photovoltaic power generation, solar energy application in India, energy plantations, wind energy, types of windmills, types of wind rotors, 	(06)			
Unit	 Darrieus rotor and Gravian rotar, wind electric power generation, wind power in India, economics of wind farm, ocean wave energy conversion, ocean thermal energy conversion, tidal energy conversion, geothermal energy. 	(06)			
Unit	 Biomass energy resources, thermochemical and biochemical methods of biomass conversion, combustion, gasification, pyrolysis, biogas production, ethanol, fuel cells, alkaline fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, solid polymer electrolyte fuel cell, magneto hydro dynamics, open cycle and closed cycle systems, magneto hydro dynamic power generation, energy storage routes like thermal energy storage, chemical, mechanical storage, electrical storage. 	(06)			
Unit	 Energy conservation in chemical process plants, energy audit energy saving in heat exchangers, distillation columns, dryers, ovens and furnaces and boilers, steam economy in chemical plants, energy conservation in petroleum, fertilizer and steel industry, cogeneration, pinch technology, recycling for energy saving, electrical energy conservation in chemical process plants, environmental aspects of energy use. 	(06)			
Refe	ence Books	T 1 XX7'1			
1	Goldmberg J., Jonansson, Reddy A.K.N. & Williams R.H., Energy for Sustainable World, J. Bangal N.K. Klaaman M. & Malias M. Bangayakia Energy Sources & Conversion Tech. To	to MoCrowHill			
2	Bansai N.K., Kleeman M. & Menss M., Renewable Energy Sources & Conversion Tech., Ta				
3.	Sukhatme S.P., Solar Energy, Tata McGrawHill				
4	Mittal K.M., Non-Conventional EnergySystems, WheelerPub				
5	Venkataswarlu D., Chemical Technology, I, S.Chand				
0	PandeyG.N., A LextBookonEnergySystemand Engineering, V1kasPub.				
/ Q	Paic D. Non ConventionalEnergySources KhannaPub				
0					
Text	Rooks				
1	Power Plant Engineering, P. K. Nag Tata McGraw Hill 2nd edn2001.				
2	Power Plant Engineering, Domakundawar, Dhanpath Rai sons.2003				
. – .					

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar M.Tech. (Chemical Engineering), Sem.-II

Ch-PE-2041 (Elective IV) Advanced Separation Techniques				
Teaching Scheme			Examination Scheme	
Lectures	03 Hrs/Week		CIE	40 Marks
Tutorials			ESE	60 Marks
Total Credits	03		TW	
			Duration of ESE	•
Course Outcome:-				
CO1: Apply modern separation techniques in various applications.				
CO2: To design a process based on separation principles.				
CO3: Appropriate application of separation steps in industrial processes.				
CO4: To compute the kinetics of various types of separation processes.				

CO5: Analyze and design pervaporation, chromatography and dialysis based separation processes.

CO6: Analyze and design novel membranes for intended application.

	Course Contents	Hours				
Unit 1	General Review of Conventional process, recent advances in separation technique based on size, surface properties ionic properties and other special characteristics of substance.	(04)				
Unit 2	Filtration Process Concept, Theory and Equipment used in Cross flow filtration, Cross flow electro filtration, duel functional filtration surface based solid- liquid separation involving stead liquid, Siroflocfilter.	(04)				
Unit 3	Membrane filtration Types and choice of membranes, Plates and frame, tubular, Spherial wounded and hollow fibre membrane, reactor and their relative merits , commercial, pilot plant, and labortary membranes, Permeates involving analysis, reverse osmosis, nano filtration, ultrafiltration, microfiltration and donan analysis, economics of membrane operation, cevanic membrane.	(05)				
Unit 4	Separation by Adsorption technique Mechanism, Choice and type of adsorbent, normal adsorption technique, affinity chromatography, and immune chromatography, types of equipment and commercial processes, recent advance and processes, Economics.	(05)				
Unit 5	Ionic Separation: Controlling factor, application, type of equipment used in electrophoresis, dielectrophoresis, ion exchange chromatography, and electro-dialysis, commercial processes.	(05)				

Unit	6 Other technique: Separation Involving lyophilisation, pervaporation and permeation technique for solid, liquid, and gases, industrial variables and examples, zone melting, add crystallization, other separation processes, supercritical fluid extraction, oil spillage management.	(05)				
Refe	Reference Books					
1	LaceyR.E andS.loaeb, industrial processing with membrane, wiely, new yark-1972					
2	KingC.J,Separationprocesses,TataMc-Graw-hillpublicationCo.ltd-1982					
3	Schoew, HM, New Chemical Engineering Separation technique, future sciencepublisher 197	72				
4	Ronald W.Ronssel, Handbook of process Technology, wily new York 198					

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar						
	First Year M. Tech. Chemical Engineering Semester- II					
OEC-CH2051: Project Management						
Teaching Scheme Examination Scheme			me			
Lectures	03 Hrs/Week		ISE	40 Marks		
Tutorials			ESE	60 Marks		
Total Credits	03		TW			
			Duration of ESE	•		

Course Objectives : -
1 To study concept of Project Management and skills
2 Ability to understand organization structure
3 To acquaint with staffing the project office and team
4 Ability to understand controlling parameters and human behaviour
5 To study and develop a project scope
6 Ability to use CPM and PERT methods

	Course Contents	Hours
	Project Management growth	
	Concept and Definition, General System Management, Project management,	
Unit 1	Resistance to Change, System programmed, Project product vs project management a	(05)
	definition focus of success, Face of failure, Project life cycle, Project management	
	methodologies,Corporate culture	

Unit 2	Organizational structure Introduction, organizational work flow, Traditional organization, Developing work, integration position, Project coordinator, Projected organization, Matrix structure, Strong weak balanced matrix, Project management Expertise, Studying tips for the PMF (Project Management CertificateExam)	(05)
Unit 3	Organizing and staffing the project office and team The staffing environment, Selecting the project manager,Skill requirement for project and programme manager, Organizational staffing progress,The project office, Project organizational chart.	(05)
Unit 4	management function Controlling, Directing ,Project Authority, Interpersonal life cycle, leadership in a project management environment, life cycle leadership, organizational impact ,employee manager problem, management pitfalls, Communication, Human behavior education, Management policies andprocedure.	(05)
Unit 5	Special Topic Performance measurement, Financial compensation and rewards, Critical Issues with rewarding project team, mega Project, Morality, Ethics and corporate culture, Professional Responsibility, Internal Prternership, External Prternership, Training and education, Integrated project team, Virtual project team,Break through	(05)

Course Outcomes (CO): At the end of course students will
 Define various operations like distillation, extraction, leaching, Compare and classify various mass transfer operations with or without chemical reaction
2. Design calculation of distillation column for the multi-component system
3. Analyze the problem of Separation by adsorption and design of absorber, chromatographic separation
4. Evaluate the separation by liquid extraction, leaching used and justify the extract operation to choose for specific problem
5. Estimate final data for designing number of stages, Height of column in the operations
6. Define various operations like distillation, extraction, leaching

Text Books

1

"A system Approach to	planning	Scheduling	Controlling	by Harolad Kerzne	10th Ed Willy
11 by been 11 ippi ouen to	pranning,	Seneganing,	controlling,	of Harolaa Hereite	. iouinde (filing

Reference Books

1	Project Management Theory and Practices Crary L Richardsion, CRC press, Taylor and Franas Group, boca ration London, Newyark
2	Project Management for Engineer business, technology 4 th Ed, Jhon M Nicholas, Herman

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar					
First Year M.Tech. Chemical Engineering Semester- II					
Ch-OEC-2051 Operation Research					
Teaching Scheme Examination Sch	eme				
Lectures 03 Hrs/Week CIE	40 Marks				
Tutorials ESE	60 Marks				
Total Credits 03 TW					
Duration of ESE					
Course Outcome:-					
CO1: Identify and develop operational research models from the verbal description of the real system.					
CO2: Understand the mathematical tools that are needed to solve optimisation problems.					
CO3: Use mathematical software to solve the proposed models					
CO4: Develop a report that describes the model and the solving technique, analyse the results and propo	ose				
recommendations in language understandable to the decision-making processes in Management Engine	ering.				
CO5: Conduct and interpret post-optimal and sensitivity analysis and explain the primal-dual relationsh	ip.				
CO6: Define and formulate linear programming problems and appreciate their limitations.					
Course Contents	Hours				
Unit 1 Introduction to Operations Research: Basics definition, scope, objectives, phases, models and limitations of Operations Research. Linear Programming Problem – Formulation of LPP, Graphical solution of LPP. Simplex Method. Artificial variables. big-M method. two-	(06)				
phase method, degeneracy and unbound solutions					
Transportation Problem. Formulation, solution, unbalanced Transportation problem. Finding					
Unit 2 basic feasible solutions – Northwest corner rule, least cost method and Vogel's	(06)				
approximation method. Optimality test: the stepping stone method andMODImethod.					
Unit 3 Assignment model. Formulation. Hungarian method for optimal solution. Solving unbalanced problem. Traveling salesman problem and assignment problem.	(06)				
Sequencing models. Solution of Sequencing Problem – Processing n Jobs through 2					
Unit 4 Machines – Processing n Jobs through 3 Machines – Processing 2 Jobs through m machines	(06)				
 Processing n Jobs through m Machines. 					
Unit 5 approach for Priority Management employment smoothening, capital budgeting, Stage	(06)				
Coach/Shortest Path, cargo loading and Reliability problems.					
Games Theory. Competitive games, rectangular game, saddle point, minimax (maximin)					
Unit 6 method of optimal strategies, value of the game. Solution of games with saddle points,	(06)				
dominance principle. Rectangular games without saddle point – mixed strategy for 2 X 2					
games.					

Text	Books					
1	P. Sankara Iyer, "Operations Research", Tata McGraw-Hill,2008.					
2	A.M. Natarajan, P. Balasubramani, A. Tamilarasi, "Operations Research", Pearson Education, 2005.					
Refe	Reference Books					
1	JKSharma.,"OperationsResearchTheory&Applications,3e",MacmillanIndiaLtd,2007.					
2	P. K. Gupta and D. S. Hira, "Operations Research", S. Chand & co.,2007.					
3	JKSharma.,"OperationsResearch,ProblemsandSolutions,3e",MacmillanIndiaLtd.					
4	N.V.S. Raju, "Operations Research", HI-TECH,2002.					

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar							
	First Year M.Tech. Chemical Engineering Semester- II Practical						
		Ch-LC-2061 Analytical Laboratory					
Teaching Sche	me		Examination Sche	eme			
Practical's	04 hr/Week		ESE				
Total Credits	02		TW	25 Marks			
			Duration of ESE				
Course Ou	utcome:-						
CO1: Apply ma compounds and	nthematical, physical samples.	and chemical concepts to routine tasks such as	s the analysis and synthe	esis of chemical			
CO2: Describe	and understand the c	apabilities and limitations of instrumental meth	ods				
CO3: Demonstr	ate competence in c	ollecting and interpreting data in the laboratory.					
CO4: Apply pri	nciples of chemistry	to the observations of substances experiencing	physical or chemical ch	nanges.			
CO5: Laborato	ry skills for the pur	pose of collecting, interpreting, analyzing, and	d reporting (in written	form) chemical			
data.				-			
(1)		- 4 5 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		and a share a second			

CO6: Conduct basic manual quantitative and qualitative analyses accurately, using prescribed laboratory procedures.

Course	e Contents	
1.	Analysis Of Given Sample by using Gas Chromatography	
2.	Detail study and Analysis of High Performance Liquid Chromatography(HPLC)	
3.	Instrument Exploration :Scanning Electron Microscopy(SEM)	
4.	Measurement, analyze, and discussion of three different types of	
	Samplevia Thermogravimetric Analysis, orTGA	
5.	Determination of the amount of carbon monoxide in exhaust samples	
	byFTIR spectroscopy	
6.	Spectrophotometry: Absorption spectra and the use of light absorption	
	tomeasure concentration	
7	Analysis by using ColElectronhorosis	
1	Analysis by using Genereculophoresis	

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar								
First Year M.Tech Chemical Engineering) Semester- II								
		Ch-SW-207	'1: Seminar – II					
Teaching Sche	eme		Exa	mination Sch	eme			
Lectures			ISE					
Tutorials			ESE	(Oral)				
Practical	02Hrs/Week		TW		50			
Total Credits	01		Dura	ation of ESE				
Course Obje	ctives (CO):							
1.To Identify,	understand and	discuss current, real-wor	ld issues.					
2.To Distingui	sh and integrate	differing forms of know	ledge and academic disciplir	aryapproach	es (e.g.,			
humanities and	l sciences) with	that of the student's own	academic discipline (e.g., in	n agriculture,	architecture, art,			
business, econ	omics, educatio	n,engineering, natural res	sources, etc.). and apply a m	ultidisciplina	ry strategy to			
addresscurrent	addresscurrent, real-world issues.							
3. To Improve oral and written communication skills.								
4. To Improve presentation skills								
		Course Conter	nts		Hours			

Toophir	ng Sahama Evaminat	ion Scheme					
	Ch-2081: Comprehensive Viva						
First Year M.Tech Chemical Engineering Semester- II							
TatyasahebKore Institute of Engineering & Technology, Warananagar							
of communication that demonstrates respect and understanding in a complex society.							
4 Comm	unicate Acquire articulate create and convey intended meaning using verbal	and non-verbal method					
issues, e	xplore creative avenues of expression, solve problems, and make consequentiald	ecisions					
and the a 3 Think	ability to integrate information across disciplines.						
use, and	develop knowledge in the arts, humanities, sciences, and social sciences, withdis	ciplinary specialization					
commur 2. Learn	and integrate. Through independent learning and collaborative study attain						
diversity	in an interdependent world, and a service-oriented commitment to advance and	sustain local and global					
1. Annly	principles of ethical leadership, collaborative engagement, socially responsible	ehavior, respect for					
C							
	should be reserved for the attendance of a student in the seminars of other students.						
1	The student has to deliver a seminar talk in front of the faculty of the department and his classmates. The faculty, based on the quality of work, carried out, preparation and understanding of the candidates. Some marks	()					
	paper on some specific well defined area/ specialized stream of Mechanical Engineering.Each student has to prepare a write up of about 25-30 pages of "A4" size sheets and submit it in IEEE format in duplicate as the term work.						

Teaching S	cheme		Examinati	Examination Scheme			
Lectures			ISE				
Tutorials			ESE (Oral	1) 25			
Total Credit	S		TW				
			Duration of	f ESE			
Course Ol	Course Objectives (CO):						
	1.To verify the continuous assessment and performance of students by external examiner						
and internal examiner.							
Course Contents Hours							

1	The students have to prepare on all subjects which they have studied inI st and II nd semesters The viva will be conducted by the External/Internal Examiner jointly and their appointments will be made by institute. The indepth knowledge, preparation and subjects understanding will be assessed by theExaminers.	()					
Course Outcomes (CO): At the end of course students will							
1. Verify their knowledge based on the subjects they have studied in Semester-I and Semester-II.							

SEMESTER-III

	Tatyasaheb Kore Institute of Engineering & Technology, Warananagar						
	First Year M. Tech Chemical Engineering Semester- II						
			Ch-MC-3011 Research Methodolog	gy			
Teachin	ng Sche	me		Examination Sc	heme		
Lectures	8	02 Hrs/Week		ISE	40 Marks		
Tutorial	8			ESE	60 Marks		
Total Cr	redits	02		TW			
				Duration of ESE	•		
Course	e Objec	ctives (CO):		I			
		1 Understand	l some basic concepts of research and its n	nethodologies			
		2 Identify	appropriate research topics				
		3 Select an	d define appropriate research problem and	parameters			
		4 Prepare a p	roject proposal (to undertakeproject)				
		5 Organize a	nd conduct research (advanced project) in	a more appropriate n	nanner		
		6 Understand	ing how to write a research report and thes	is			
Course Contents					Hours		
	Objectives and types of research: Motivation and objectives – Research						
Unit 1	metho	vs. Analytical,	(04)				
Omt I	Applied vs. Fundamental, Quantitative vs. Qualitative, Conceptual vs.				(04)		
	Empi	rical.					

Unit 2	Research Formulation – Defining and formulating the research problem - Selecting the problem - Necessity of defining the problem - Importance of literature review in defining a problem – Literature review – Primary and secondary sources – reviews, treatise, monographs- patents – web as a source – searching the web - Critical literature review – Identifying gap areas from literature review - Development of working hypothesis.	(04)
Unit 3	Research design and methods – Research design – Basic Principles- Need of research design — Features of good design – Important concepts relating to research design – Observation and Facts, Laws and Theories, Prediction and explanation, Induction, Deduction, Development of Models. Developing a research plan - Exploration, Description, Diagnosis, and Experimentation. Determining experimental and sample designs.	(04)
Unit 4	Data Collection and analysis: Execution of the research - Observation and Collection of data - Methods of data collection – Sampling Methods- Data Processing and Analysis strategies Data Analysis with Statistical Packages - Hypothesis-testing - Generalization and Interpretation.	(04)
Unit 5	Reporting and thesis writing – Structure and components of scientific reports - Types of report – Technical reports and thesis – Significance – Different steps in the preparation – Layout, structure and Language of typical reports – Illustrations and tables - Bibliography, referencing and footnotes - Oral presentation – Planning – Preparation – Practice – Making presentation – Use of visual aids - Importance of effective communication.	(04)
Unit 6	Application of results and ethics - Environmental impacts - Ethical issues - ethical committees - Commercialization – Copy right – royalty - Intellectual property rights and patent law–Trade Related aspects of Intellectual Property Rights–Reproduction of published material Plagiarism - Citation and acknowledgement - Reproducibility and accountability	(04)
Assignment in the assemble semester	nents : Each student will submit minimum 4 assignments based on the different topics in constrea of research methodology keeping track of the recent trends in research and development r one seminar on relevant topic of research.	sultation with faculty, and the end of the

-	
Cou	rse Outcomes (CO): At the end of course students should be able to
1 Ide	ntify comprehensive understanding of principal in demonstrating academic research
2 Dif	ferentiate possible research resources and transform issue in broader perspective
3 Co	mmunicating research in own words to create new meaning
4 Ch	oose and propose a good research proposal in systematic way.
5 Ap	ply appropiate research techniques and tools from different approached with profound lectual integrity and ethics
Text	Books
1	Kothari, C.R., 1990. Research Methodology: Methods and Techniques. New Age International.
Refe	rence Books
1	Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., 2002. An introduction to Research
	Methodology, RBSA Publishers.
2	Sinha,S.C.and Dhiman,A.K.,2002.Research Methodology, Ess Ess Publications.2 volumes
3	Trochim, W.M.K., 2005. Research Methods: the concise knowledge base, Atomic Dog Publishing.
4	Wadehra, B.L. 2000. Law relating to patents, trademarks, copyright designs and geographical
	indications. Universal Law Publishing.

		Tatyasa	aheb Kore Institute o	f Engineering & Te	chnology, V	Varanar	nagar
First Year M.Tech. Chemical Engineering Semester- III							
			Ch-MC-3021 Inc	dustrial Training			
Teaching Scheme Examination Scheme							
Lecture	s=				ISE		
Tutorial	ls				ESE		
Practica	ul 04 Hrs/	Week			TW		50
Total C	redits 02				Duration of	ESE	
Course	e Objectives (C	CO):					
1. To ex	pose the studen	ts to actual wo	rking environment a	nd enhance their know	owledge and	d skill	
from wh	at they have lea	arned in the col	llege.				
2.To ins	till the good qu	alities of integr	rity, responsibility an	d self confidence. A	All ethical v	alues ar	nd
good wo	orking practices	must be follow	ved by student.				
3.To hel	p the students a	bout the safety	practices and regula	ations inside the ind	ustry and to	instill	
the spiri	t of teamwork a	and good relation	onship between stude	ents and employees.			
			Course Contents				Hours
Unit 1	The student has to prepare the report of training undergone in the industry during vacation after semester II. It shall include the brief details of assignment completed by the candidate and general observation and analysis. The identified areas for undertaking the dissertation work shall form part of report. The term work marks should be based on report and departmental oral exams. The training should be of minimum two weeks from reputed industries and certificate of the same should be a part of the report.						
Course	Qutaomag (C	O). At the one	l of course students				
Course	$\frac{1}{1}$ Ability to	demonstrate th	a use interpretation a	will and application of an	appropriate	internat	ional anginaering
star	dard in a specifi	c situation.	ie use, interpretation a	and application of an	appropriate	internat.	ional engineering
2 Ability to analyze a given engineering problem, identify an appropriate problem solving methodology, implement the methodology and propose a meaningful solution.							
3 Ability to apply prior acquired knowledge in problem solving							
4 Ability to identify sources of hazards, and assess/identify appropriate health & safety measures							
5 Ability to work in a team and take initiatives							
	6 Ability	to effectively a	communicate solution	n to problems (oral,	visual, writ	tten)	
	7 Ability	to manage a pi	roject within a given	time frame			
	8 Ability	to adopt a fact	ual approach to decis	sion making andto t	ake enginee	ring de	cision

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar Second Year M.Tech Chemical Engineering, Semester-III Ch - SLC/AC -3031: MOOC/Swayam **Teaching Scheme Examination Scheme** Lectures ISE ____ ____ Tutorials ESE --_____ TW Total Credits --50 Duration of ESE ____ **Course Objectives (CO):** 1. To teach use of Mooc/Swayam as a learning platform designed to provide educators, administrators and learners with a single robust, secure and integrated system to create personalized learning environment. **Course Contents** Hours Students will be able to choose course of their choice from Mooc/swayam and to be acquaintance with recent developments in Chemical Engineering beyond syllabus The term work under this submitted by the student shallinclude. 1) Work diary maintained by the student and countersigned by his guide. 2) The content of work diary shall reflect the efforts taken by candidates for (a) Searching the suitable project work. (b) Visits to different factories or organizations. Unit 1 (c) The brief report of feasibility studies carried to come to final conclusion. (d) Rough sketches (e) Design calculations etc. carried by the student. 3) The student has to make a presentation in front of panel of experts in addition to guide as decided by department head. Course Outcomes (CO): At the end of course students will Students will be able to choose course of their choice from Mooc/swayam and to be acquaintance with recent developments in Chemical Engineering beyond syllabus.

	Tatyasaheb Kore Institute of Engineering & Technology, Warananagar							
	Second Year M.Tech Chemical Engineering, Semester-III							
		Ch-PC-3041: Dissertation Ph	ase-I					
Teachir	ng Scheme		Examinatio	on Scheme				
Lectures	s		ISE					
Tutorial	s		ESE (Oral)	50				
Practica	1 16Hrs/Week		TW	50				
Total Ci	redits 08		Duration of	ESE				
Course	Objectives (CO):	1 1 1 1 . 1 . 1 . 1 . 1 . 1	1 1 • .	1 (()				
	1. To grow deep	er knowledge, understanding, capabiliti	es and attitudes in t	the context of the				
	programme of st	uay.						
	2. To investigate	more deeply into and synthesise knowle	edge acquired in pr	evious studies.				
		Course Contents		Hours				
	The dissertation	submitted by the student on topic	c already					
	approved by aca							
	submitted by the							
	guidelines.							
	Format of dissert							
	The dissertation wo							
	total No. of minimum pages shall not less than 60. Figures, graphs,							
	annexure etc be as p	ber the requirement.						
	The report sh	ould be written in the standard forn	nat.					
Unit 1	1. Title she	eet						
Omt I	2. Certifica	ate						
	3. Acknow	ledgement						
	4. List of f	igures, Photographs/Graphs/Tables						
	5. Abbrevi	ations.						
	6. Abstrac	t						
	7. Content	S.						
	8. Text wi	th usual scheme of chapters.						
	9. Discuss	ion of the results and conclusions						
	Bibliography (the so appropriate place IE	ource of illustrative matter be acknowl EEE/ASME/Elsevier Format)	edged clearly at					

Course Outcomes (CO): At the end of course students will

1. Design and engage in, an independent and sustained critical investigation and evaluation of a chosen research topic.

2. Systematically identify relevant theory and concepts, relate these to appropriate methodologies and evidence, apply correct techniques and draw suitable conclusions.

3. Involve in systematic finding and critical review of appropriate and relevant information sources

4.Understand and apply ethical standards of conduct in the collection and evaluation of data and other resources

5. Present research concepts and contexts clearly and effectively both in writing and orally

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar					
Second Year M.Tech Chemical Engineering, Semester-III					
Ch-PC-4011: Dissertation Phase-II					
Teaching Scheme			Examination Scheme		
Lectures			ISE		
Tutorials			ESE (Oral)	100	
Practical	32Hrs/Week		TW	100	
Total Credits	16		Duration of ESE		
Course Objectives (CO):					
1. To grow deeper knowledge, understanding, capabilities and attitudes in the context of the programme					
of study.					
2. To investigate more deeply into and synthesise knowledge acquired in previous studies.					

	Course Contents	Hours		
	The dissertation submitted by the student on topic already			
	approved by academic council on basis of initial synopsis submitted			
	by the candidate, shall be according to following guidelines.			
	Format of dissertation report: The dissertation work report shall be typed on A4 size bond paper. The total No. of minimum pages shall not less than 60. Figures, graphs, annexure etc be as per the requirement.			
Unit 1	The report should be written in the standard format. 1. Title sheet			
	2. Certificate			
	3. Acknowledgement			
	4. List of figures, Photographs/Graphs/Tables			
	5. Abbreviations.			
	6. Abstract			
	7. Contents.			
	8. Text with usual scheme of chapters.			
	9. Discussion of the results and conclusions			
	Bibliography (the source of illustrative matter be acknowledged clearly at appropriate place IEEE/ASME/Elsevier Format)			
	The students should publish at least one paper in a reputed journal (UGC approved/ SCOPUS Indexed etc.)			
	The student has to make a presentation in front of panel of experts in addition to guide as decided by department head			
	· · · · · · · · · · · · · · · · · · ·			
Course Outcomes (CO): At the end of course students will				
1. Design and engage in, an independent and sustained critical investigation and evaluation of a chosen research topic.				

2. Systematically identify relevant theory and concepts, relate these to appropriate methodologies and evidence, apply correct techniques and draw suitable conclusions.

Yenes

Institute PG Co-ordinator T.K.I.E.T., Warananagar

APPROVED BY

Chairman **Board of Studies** 181

Board of Studies CHEMICAL ENG 3. DEPT. Tatyasheb Kore Institute of E & Technology (Autonomo: Warananagar, Dist. Kolitashir

Academic Dean F.K.I.E.T., Warananagar

muthors Principal T.K.I.E.T., Warananagar

2

En Wa VACAP

Kolha eal of Institute SEERING

Chairman Academic Council asaheb Koic I stitute of Engg Techology (Autonomous) arahanagar, Dist. Kolhapur