

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar

First Year M. Tech. Chemical Engineering (Semester-I)

(To be implemented from 2021-22)

Credit Scheme

				Teach	ing So	cheme		Credi	it Schen	ne
Course Code	Category	Course Title	тн	Tut	P	Total Contact Hours	ТН	Tut	P	Total Credit Assigned
Ch - PCC- 101	PCC	Advanced Momentum & Heat Transfer	3	1		4	3	1	-	4
Ch - PCC- 102	PCC	Advanced Chemical Engineering Thermodynamic	3	1		4	3	1		4
Ch – PE - 103	PE	Program Elective – I Process Modeling in Chemical Engineering	3			3	3		1	3
Ch - PE- 104	PE	Program Elective-II	3			3	3			3
Ch - PE- 105	PE	Program Elective-III	3			3	3			3
Ch - LC- 106	LC	Advanced Separation Laboratory			4	4			2	2
Ch - SW - 107	SW	Seminar-I			2	2			1	1
			15	02	06	23	15	2	3	20

Course Code	Category	Course Title					Examination Scheme			
			ISE -I	ISE -II	Avg.	ESE	TW	0	P	Total
Ch - PCC- 101	PCC	Advanced Momentum & Heat Transfer	40	40	40	60	25			125
Ch - PCC- 102	PCC	Advanced Chemical Engineering Thermodynamic	40	40	40	60	25	ı		125
Ch - PE- 103	PE	Program Elective – I Process Modeling in Chemical Engineering	40	40	40	60	-	I		100
Ch - PE- 104	PE	Program Elective-II	40	40	40	60	-	-		100
Ch - PE- 105	PE	Program Elective-III	40	40	40	60				100
Ch - LC- 106	LC	Advanced Separation Laboratory					25	25		50
Ch - SW - 107	SW	Seminar-I					50	1		50
					200	300	125	25		650

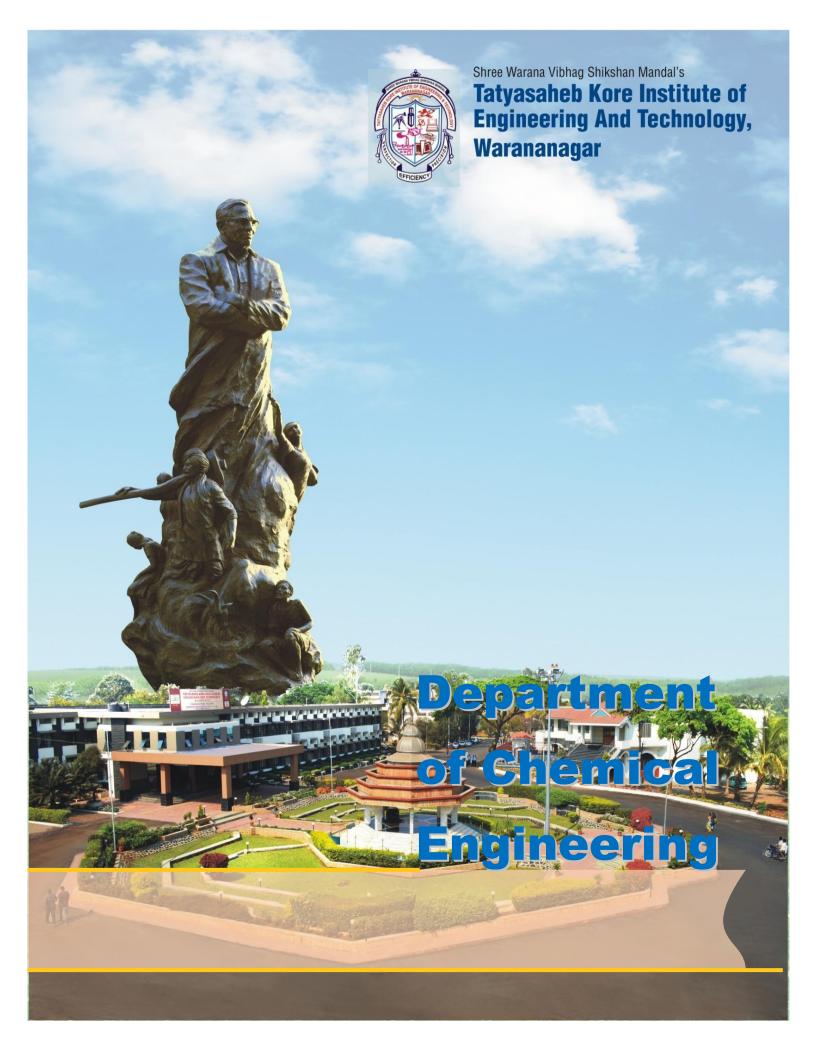
Tatyasaheb Kore Institute of Engineering and Technology, Warananagar

First Year M. Tech. Chemical Engineering (Semester-II)

(To be implemented from 2021-22)

Credit Scheme

				T	Ceaching	Scheme		Cred	lit Scl	neme
Course Code	Category	Course Title	ТН	Tut	P	Total Contact Hours	тн	Tut	P	Total Credit Assigned
Ch - PCC- 201	PCC	Advanced Mass Transfer	3	1		4	3	1	-	4
Ch - PCC- 202	PCC	Chemical Process Control	3	1		4	3	1	-	4
Ch - PE- 203	PE	Program Elective-IV Modern Reaction Engg.	3			3	3			3
Ch - PE- 204	PE	Program Elective-V	3			3	3		-	3
Ch - OEC- 205	OEC	Open Elective Course	3			3	3		-	3
Ch - LC- 206	LC	Analytical Laboratory			4	4			2	2
Ch - SW - 207	SW	Seminar-II			2	2			1	1
Ch - 208		Comprehensive Viva								
			15	02	06	23	15	02	3	20


Course Code	Category				E	xaminat	ion Sche	eme		
Course Coue	Category	Course Title		ISE		ECE	TW	0	P	Total
			ISE -I	ISE -II	Avg.	ESE	TW	U	1 Total	1 Otal
Ch - PCC- 201	PCC	Advanced Mass Transfer	40	40	40	60	25			125
Ch - PCC- 202	PCC	Chemical Process Control	40	40	40	60	25			125
Ch - PE- 203	PCC	Program Elective-IV Modern Reaction Engg.	40	40	40	60				100
Ch - PE- 204	PE	Program Elective-V	40	40	40	60				100
Ch - OEC 205	OEC	Open Elective Course	40	40	40	60	1			100
Ch - LC- 206	LC	Analytical Laboratory					25			25
Ch - SW - 207	SW	Seminar-II					50			50
Ch - 208		Comprehensive Viva						25		25
					200	300	125	25		650

	First Year M. Tec Engineering (So		
Sr. No	Program Elective-I	Program Elective-II	Program Elective-III
1	Process Modeling in Chem. Engg.	Nano Technology	Bio Process Engineering
2	Corrosion Engg.	Green Technology	Materials Engineering
3	Polymer & Rubber Technology	Pharmaceutical Biotechnology	Process Equipment Design

	First Year M. Chemical Enging (Semester-	neering		
Sr. No	Program Elective-IV	Program Elective-V	Sr. No	Open Elective Course
1	Modern Reaction Engg.	Computational Fluid Dynamics	1	Cryogenics
2	Catalysis & Surface Phenomena	Energy Engineering	2	Design for Manufacture and Assembly
3	Down Stream Processing	Advance Separation Techniques	3	Waste To Energy.
			4	Water Power Engineering.
			5	Advanced Operating Systems
			6	Artificial Intelligence
			7	Project Management
			8	Operational Research

Second Year M. Tech. Chemical Engineering

Syllabus Structure under Autonomous Status of TKIET, Warananagar 2021-2022

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar

Second Year M. Tech. Chemical Engineering (Semester-III)

(Tobe implemented from 2021- 2022) Credit Scheme

			7	Feachi	ng Sch	eme		Cre	dit Sch	neme
Course Code	Category	Course Title	ТН	Tut	P	Total Contact Hours	ТН	Tut	P	Total Credit Assigned
Ch - MC - 301	MC	ResearchMethodology &Intellectual Property Rights	2			2	2			2
Ch - II - 302	II	Industrial Training			4	4		-	2	2
Ch - SLC/AC-303	SLC/AC	One Course from MOOC/SWAYAM	1					-	1	
Ch - PC- 304	PC	Dissertation Phase-I			16	16		-	8	8
			2		20	22	02		10	12

Course Code	Category				E	xaminat	ion Sche	me	me		
Course Coue	Category	Course Title		ISE		ESE	TW	0	P	Total	
			ISE -I	ISE -II	Avg.	Lon	1,,	•	-	10001	
Ch - MC - 301	MC	ResearchMethodol ogy&Intellectual Property Rights	40	40	40	60				100	
Ch - II - 302	II	Industrial Training					50			50	
Ch - SLC/AC -303	SLC/AC	One Course from MOOC/SWAYAM					50			50	
Ch - PC- 304	PC	Dissertation Phase-I					50	50		100	
					40	60	150	50		300	

^{**} Candidate who has unable to get passing marks in certification course has to reappear for improvement at institute level test/ ${f MOOC/SWAYAM}$

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar

Second Year M. Tech. Chemical Engineering (Semester-IV)

(To be implemented from 2021-22)

Credit Scheme

				Teach	ing Sc	heme	Credit Scheme			
Course Code	Cate gory	Course Title	ТН	Tut	P	Total Contact Hours	тн	Tut	P	Total Credit Assigned
Ch - PC-401	PC	Dissertation Phase-II			32	32			16	16
					32	32			16	16

Course	Cate gory Common Title		Examination Scheme								
Code	Cate gory	Course Title	ISE				TW	0	P	Total	
			ISE -I	ISE -II	Avg.	ESE	1 **	O	1	Total	
Ch - PC-401	PC	Dissertation Phase-II					100	100		200	
							100	100	-	200	
									-		

List of Abbreviations

Abbreviations	Title
PCC	Professional Core Course
PE	Program Elective
OEC	Open Elective Course
LC	Laboratory Course
MC	Mandatory Course
SW	Seminar work
II	Industrial Internship
PC	Dissertation
SLC/AC	Self-Learning Course/Audit course

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar

First Year M.Tech.Chemical Engineering Semester- I

(PCC) CH101: Advanced Momentum and Heat Transfer

Teaching Scheme		Examination Scheme		
Lectures	03Hrs/Week	ISE	40 Marks	
Tutorials	01	ESE	60 Marks	
Total Credits	04	TW	25 Marks	
		Duration of ESE	02 Hrs.30 Min.	

Course Objectives (CO):

- 1: Introduce analogy between momentum and heat transfer
- 2: Explain general conservation equations for transport phenomena
- 3: Develop momentum balance for a given system at macroscopic and microscopic scale.
- 4: Analysis of governing equations to obtain velocity profiles
- 5 :Assist students in developing ability to make engineering judgments, including judgements regarding process safety.
- 6. Discuss applications in various heat transfer equipment in process industries ,Heat Transfer Augmentation & Pinch Technology

	Course Contents	Hours
Unit 1	Boundary Layer Flow: Boundary layer equations, separation of BL, Blasius solution for flat state, properties of BL equation, Momentum integral equations.	(04)
Unit 2	Turbulent Flow: Reynolds equation for turbulent flow, velocity distribution for flow in pipe. Statistical theory of turbulence. Drag reduction etc. Non-Newtonian Fluids: Rheological behavior of non-Newtonian fluids, laminar flow in cylindrical tubes, laminar flow between parallel plates, laminar flow in annuli. Generalized relationship for power law model	(04)
Unit 3	Agitation And Mixing: Velocities in stirred tanks. Flow patterns in stirred tanks, Power consumptions in stirred vessels, mixing equipments. Multiphase Flow: Two phase gas vapor liquid flow, horizontal and vertical flow of gas-liquids, liquids, gas-solid mixtures, slip and hold up effect, phase separation and settling behavior, analysis of stratified and bubble flow, formation of bubbles and drops and their size distribution and hold up in different flow system, momentum and energyrelations.	(06)
	Motion In The Fluidized Bed: Bubbling fluidization, semi-fluidization, mixing and segregation in fluidized bed, Numerical and application of fluidization.	(05)

Unit 4	Introduction: Review of heat Transfer, transient heat conduction; Lumped system analysis, heat transfer analogies. Turbulent Forced Convective Heat Transfer: Momentum and energy equations - turbulent boundary layer heat transfer – mixing length concept - turbulence model, Heat pipe.	(04)
Unit 5	Heat Transfer In Two Phase Systems: Heat transfer regimes and flow maps. Condensation: Basic process, on planner surface, inside and over pipe of pure and multicomponent vapors. Heat transfer in paced bed and fluidized beds. Overall pressure drop and void calculation methods. Flow regimes in two phase flow. Drift flux model, annular flow, critical flow, flow instabilities, homogeneous flow, and separated flow. Non-Newtonian Flow Heat Transfer: Comparative study of Newtonian and non-	(05)
	Newtonian fluid in context with heat transfer, Newtonian and non-Newtonian heat transfer in circular tube, coils and other configuration, Non-Newtonian heat transfer in PFR, CSTR. Generalized relationship of power law fluid, forced convection heat transfer to Bingham plastic and power law fluid in circular conduits.	(04)
Unit 6	Heat Transfer Augmentation: Active and passive techniques, rough surface, swirl flow generation and compound augmentation. Compact heat exchangers. Introduction of Pinch Analysis and Process integration.	(05)
in the	ments: Each student will submit minimum 6 assignments based on the different topics in carea of advanced momentum and heat transfer; keeping track of the recent technological tree Outcomes (CO): At the end of course students will	
1: Abl	e to understand the chemical and physical transport processes and their mechanism	
2: Abl	e to do heat, mass and momentum transfer analysis	
3: Abl	e to analyze industrial problems along with appropriate approximations and boundary conc	litions
4: Abl	e to develop steady and time dependent solutions along with their limitations	
5: Und	erstand the concepts of boundary layer and its estimation in different flows	
6: Und	erstanding of various types of heat transfer process and devices	
Text E	Books	
1	R.B. Bird, W.E. Stewart and E.N. Lightfoot, —Transport Phenomena, John Wiley & Sor	ns, Inc, New York
-	Ranjeet Basugade, - Advance Heat Transfer Augmentation Technique: Heat	
	Pinch Analysis and Process Integration A User Guide on Process Integration for the Efficiency and C Kemp	ent Use of Energy Second
2	The Flow of Complex Mixture in Pipes" by Govier and Aziz	
3	ChemicalEngineering" by Coulson and Richardson, Volume I	
4	D.G. Knudsan and D. L. Katz. Fluid Dynamics and Heat transfer. Mc-Graw Hill,	
5	C.J. Geankoplis" Transport Processes Momentum And Mass" Bacon Inc.	
6	HArison & Davidson, Fluidization Engg, Mc-Graw Hill, 1968	

	Useful Websites
1	http://nptel.ac.in/
2	http://swayam.gov.in/
3	http://www.youtube.com/user/nptelhrd

	Tatyasaheb Kore Institute of Engir	neering & Technology, Warananagar	
	First Year M. Tech Chemi	ical Engineering Semester- I	
	PCC 102: Advanced Chemica	l Engineering Thermodynamics	
Teaching	Scheme	Examination Scheme	
Lectures	03 Hrs/Week	ISE 40 Mar	ks
Tutorials	01 Hr/Week	ESE 60 Mar	ks
Total Cre	dits 04	TW 25 Mar	ks
		Duration of ESE 02 Hrs.	30 Min.
Course (Objectives (CO):		
	1. Define & describe the basic laws of thermo	dynamic	
	2. Explain the criteria for equilibrium with sta	bility of thermodynamic system.	
	3. Develop skills to make appropriate assump	tions and ability to predict intermolecular potential	and
	excess property behavior of multi- compon	ent systems.	
	4. Analysis & estimation of the Gibbs free en	ergy and fugacity of a component in mixture	
	5. Judge the Chemical equilibrium and evalua	te the degrees of freedom for chemically reacting s	ystems
	6. Discuss statistical thermodynamic terms.		
	Course	Contents	Hours
]	Detailed review of thermodynamics laws a	nd basic concepts: Laws of thermodynamics,	
Unit 1	Concepts of entropy, Intensive and extens	ive variables, Enthalpy, Gibbs free energy,	(08)
]	Equations of state, other important thermodyn	amic properties.	
	Equilibrium and Stability in one compo	nent systems: The criteria for equilibrium,	
	Stability of thermodynamic system, The mo	lar Gibbs free energy and fugacity of a pure	(2.2)
Unit 2	component. The Gibbs phase rule for one cor	mponent system. Thermodynamic properties of	(08)
1	phase transitions Problems.		
1 -			

	The Thermodynamic of Multi Component Mixtures: The thermodynamic description of	
	mixtures. The partial molar gibbs free energy and the generalized Gibbs – Duhem equation.	
Unit 3	A notation for chemical reactions. The equations on change for a multicomponent system.	(08)
	Thermodynamic state for a multicomponent multi phase system. The Gibbs phase rule	
	Problems (Non Reactive).	
	The estimation of the Gibbs free energy and fugacity of a component in mixture: The	
	ideal gas mixture, The partial molar mixture properties. The fugacity of a species in gaseous,	
Unit 4	liquid and solid mixtures. Several correlative liquid mixtures (activity coefficient) models	(08)
	Problems. UNIFAC method, UNIQUAC equation, Vapor liquid equilibrium using activity	
	coefficient models, problems.	
	Chemical Reaction equilibrium: Chemical equilibrium in a single phase system,	
TI:4 5	Heterogeneous chemical reactions, Chemical equilibrium when several reactions occur in	(09)
Unit 5	single phase, Phase rule and Duhem's theorem for reacting systems, Degree of freedom	(08)
	analysis for non reacting and reacting systems	
	Introduction to Statistical thermodynamics: Quantum considerations, Microstates,	
Unit 6	Macrostates and thermodynamic probability , Physical models, Boltzmann statistics, Fermi-	(08)
	Dirac statistics and Bose – Einstein statistics, Partition function, Phase space,	

Assignments: Each student will submit minimum 6 assignments based on the different topics in consultation with faculty, in the area of thermodynamics of phase equilibria & chemical equilibria keeping track of the recent technological trends and developments.

Course Outcomes (CO): At the end of course students should be able to

- 1. Formulate and manipulate the thermodynamic treatment of arbitrary processes.
- 2. Formulate and analyze specific Chemical Engineering problems using fundamental concepts.
- 3. Select appropriate approximations for practical problem solving.
- 4. Understand the implications of approximations on the efficiency and accuracy of the solution

Text Books

Chemical Engineering Thermodynamics – Stanlay Sandler IInd edition Wiley graham in chemical engineering.

Refe	rence Books
1	Introduction to Chemical Engineering Thermodynamics: J.M. Smith, H.C.Vanness McGraw Hill
	International book company.
2	Thermodynamics – by J.P.Holman IV th edition McGraw Hill Inter
3	Statistical thermodynamics- M.C.Gupta Wiley Eastern Ltd.
4	"Chemical Engineering Thermodynamics" K.V.Narayanan
5	"Principles of Chemical Equilibrium", Kenneth Denbigh
6	"Chemical Engineering thermodynamics", Y. V. C. Rao,
7	"Chemical Engineering Thermodynamics", T. E. Daubert
8	"Chemical and Process Thermodynamics", B. G. Kyle
Usef	ul Websites
1	http://nptel.ac.in/
2	http://swayam.gov.in/
3	http://www.youtube.com/user/nptelhrd

	Tatyasah	eb Kore Institute of Engineering & To	echnology, Waranana	agar
	F	First Year M.Tech. Chemical Enginee	ering Semester- I	
	Elective-	I : Ch-PE-103 : Process Modeling in	n Chemical Enginee	ring
Teaching Scho	eme		Examinati	ion Scheme
Lectures	03 Hrs/Week		ISE	40 Marks
Tutorials			ESE	60 Marks
Total Credits	03		TW	
			Duration o	of ESE 02 Hrs.30 Min.
Course Obje	ctives (CO):			
1. Introd	uce fundamenta	ls of creating mathematical models of	f chemical process sy	stems.
2. Gener	ate steady and d	ynamic model for different processes	S.	
3. Solve	process design p	problems, based on fundamental analy	ysis and using mather	matical models of
chemi	cal processes.	·		
4. Imple	mentation on ma	thematical tools to analyze the system	m both to gain insight	t and make predictions.
5. Explai	in verification/ v	ralidation of simulation model through	th the simulators.	
		Course Contents		Hours

Unit 1	Introduction to dynamic models: Mass balance equation - Balancing procedure, Case studies: CSTR, Tubular reactor, Coffee percolator, Total mass balance - Case Studies: Tank drainage, Component balances - Case Studies: Waste holding tank, Energy balance- Parallel reaction in a semi continuous reactor with large temperature difference, Momentum balances -	(06)
	CSTR, Gas liquid mass transfer in a continuous reactor. Modeling of stage wise processes: Reactor Configurations, Generalized model description, Heat transfer to and from reactors, Steam heating in jacket, Dynamics of the metal jacket walls.	
Unit 2	Mass transfer models: liquid-liquid extraction, distillation, Multicomponent separation, multi component steam distillation, absorber- stage wise absorption, steady state gas absorption with heat effects, evaporator. Model Discrimination And Parameter Estimation: Rate equations, Batch reactor – Constant volume, Semi - batch reactor, CSTR - Constant volume CSTR, CSTR cascade.	(06)
Unit 3	Lumped and distributed system: Distributed system- Counter current heat exchanger, Flasher design, Condensation, Definition of lumped parameter model. Mathematical models of heat- transfer equipments: Shell & tube heat exchangers, Evaporators, Fired heaters, Partial condensers. Plug flow reactor, Plug flow reactor contactors, Liquid –liquid extraction column dynamics.	(06)
Unit 4	Flow sheet simulation : Process flow sheet simulation, Process and information matrix, Materials and Energy balance computation using modular approach, Process analysis, Process variables, selection, Equipment selection.	(06)
Unit 5	Dynamic simulation: Dynamic simulation of Reactors, distillation column, Absorbers, evaporators and crystallizes, introduction to simulation packages like GPSS, CSMP.	(06)
Unit 6	Process Simulators: Introduction to professional simulator like UNISIM, Aspen. Mathematical tools like SciLab, Introduction to Solver and Poly Math etc.	(06)

Course Outcomes (CO): At the end of course students will

- 1. define physical problems in terms of mathematical modeling and how it is related.
- 2. apply the need for modeling, estimate necessary model complexity through modeling process.
- 3. recognize how models are developing from rate laws, balances and constitutive equations.
- 4. solve the basis of chemical engineering process and adjustable parameters in them.
- 5. analyze the mathematical tool to predict the chemical engineering process
- 6. create the small modeling with simulation for any physical chemical engineering problem

Text	Books
1	John Ingham, Irving, J. Dunn, Elmar, Heinzle Jiri, E. Prenosil, "Chemical Engineering Dynamics", VCH
	Publishers Inc., New York, 1974.
2	Lubeyn W.L. "Process Modeling, Simulation and Control Engineering ", McGraw Hill Book
3	Edgar, T.F. and D.M. Himmelblau - "Optimization of Chemical Processes", McGraw Hill BookCo., New
3	York, 1989.
4	R. W. Gaikwad, Dr. Dhirendra, "Process Modeling and Simulation", Central Techno Publications, Nagpur,
+	2003.
Refe	rence Books
1	C. L. Smith, R. L. Pike and P. W. Murill, "Formulation Optimization of Mathematical models",
1	International Text, Pennsylvania, 1970.
2	Roger G. E. Franks, "Modeling and Simulation in Chemical Engineer", Wiley Inter Science, New York, 1972.
Usef	ul Websites
1	Moocs/ Swayam Courses on Process Modeling & Simulation in Chemical Engineering, OpenModelica

		•	Kore Institute of Engineering & Techno		gar	
		Firs	t Year M.Tech. Chemical Engineering S	emester- I		
		<u>Electi</u>	ive-I: Ch-PE-103: CORROSION ENG	INEERING		
Teachir	ng Scher	ne		Examination	n Scheme	
Lecture		03 Hrs/Week		ISE	40 Mark	CS .
Tutorial	ls			ESE	60 Mark	S
Total C	redits	03		TW		
				Duration of	ESE 02 Hrs.3	0 Min.
		tives (CO):				
		ce fundamentals o				
		on measurement t	•			
		nisms of corrosion				
		nmental aspects of				
5.	Explair	prevention and c	ontrol of corrosion.			
			Course Contents	1.0	Hours	
Unit 1		-	ion and importance, Electrochemical nat rate and its determination.	ure and forms	(06)	
Unit 2	Potent	ial-pH (Pourbiax	modynamics and kinetics: Electrod diagrams, Reference electrodes and	experimental	(06)	
			s laws, Instrumentation and experimenta			
Unit 3	extrap	olation plots, Po	nent through polarization technical larization resistance method, Commerconf determining polarization curves.		(06)	

Unit 4	alloying and dezincification.	(06)
Unit 5	Environmental induced cracking: Stress corrosion cracking, Corrosion fatigue cracking, Hydrogen induced cracking, Methods of prevention and testing, Erosion, Fretting and Wear.	(06)
Unit (Environmental factors and corrosion: Corrosion in water and aqueous solutions, Corrosion in sulphur bearing solutions, Microbiologically induced corrosion, Corrosion in acidic and alkaline process streams. Prevention and control of corrosion: Cathodic protection, Coatings and inhibitors, Material selection and design.	(06)
	se Outcomes (CO): At the end of course students will	
1. 0	lefine fundamentals of Corrosions.	
2. a	apply the Corrosion measurement techniques	
3. r	ecognize Mechanisms of corrosion.	
4. s	olve the problems related to the environmental impact of corrosion.	
5. a	analyze the problem and its preventive actions.	
Text l	Books	
	Fontana, M.G., Corrosion Engineering, Tata McGraw-Hill (2008). 3rd ed. (seventh reprint)	
2	Jones, D.A., Principles and Prevention of Corrosion, Prentice-Hall (1996).	
Refer	ence Books	
1	Pierre R. Roberge, Corrosion engineering: principles and practice, McGraw-Hill (2008).	
2	Sastri, V.S., Ghali, E. and Elboujdaini, M., Corrosion prevention and protection: Practical solutions, John Wiley and Sons (2007)	

		Tatyasaheb Kore Institute of Engineering & Tec				
		First Year M. Tech Chemical Engineer				
		Elective-I: Ch-PE-103: Polymer and Ru				
Teachi	ng Sche	ne	Examination School	eme		
Lecture	es	03 Hrs/Week	ISE	40 Mar	ırks	
Tutoria	ls		ESE	60 Mar	ks	
Total C	redits	03	TW			
			Duration of ESE	02 Hrs.	30 Min.	
Course	e Objec	tives (CO):				
	1 D	efine & describe the basics of polymer and rubber.				
	2	Explain the criteria for the polymerization process.				
	3	Develop skills to understand and study various processe	s of polymer and rubber prod	duction.		
	4 T	o understand the advances in polymer and rubber technology	ologies.			
	5 [o prepare the students to take challenges of polymer fie	eld in his profession.			
		Course Contents			Hours	
	Polyn	erization Fundamentals – Introduction and importa	ance of polymers, Develop	ment of		
	polym	ers, Classification of polymers based on phys	siochemical structure, Ty	pes of		
TI!4 1	polym	erization, Mechanism of polymerization, Physical pr	operties and technical appl	ication,	(0.6)	
Unit 1	Polym	er structure and stereo-regular polymers Mole	ding of plastics into	articles,	(06)	
	Homo	geneous, Bulk, Solution, Emulsion and susper	nsion polymerization and	d their		
	compa	rison				
	Manu	facture of industrially important polymers for Pla	stics – Raw materials,			
	polyo	efines- polythene, Poly propylene, Vinyl polymers-po	olyvinyl chloride, polyviny	l		
Unit 2	acetat	e, polyvinyl alcohol, polyvinylidiene chloride, Formal	ldehyde and Epoxy resins a	and	(06)	
	their t	pes, alkyd resins, polyacrylonitrile, polystyrene and	copolymers of styrene, poly	ysters		
	l and no	lyamides,		İ	l .	

	Manufacture of industrially important polymers for Synthetic fibers –Introduction ,	
Unit 3	Classification , properties and preparation , Nylon -6 , Nylon - 66, Rayon, Sillicones, Poly	(06)
	silicones, Orlan, Saron, Teflon, Cellulose, and its derivatives.	

	Manufacture of rubber and elastomers – Introduction and importance of rubber, physical	
	and chemical properties of rubber, Classification, Natural Rubber- Structure and properties,	
TT 14 4	Rubber latex production and processing, synthetic rubber- Polymerization methods and unit	(06)
Unit 4	operations involved, Styrene – Butadiene copolymers, Nitrile rubber, Neoprene, Butyl	
	Rubber, Polyisoprene, Polybutadiene, Thiokol, Hypalon, Sillicone Rubber, Polyurethane	
	rubber, Spandex, Sponge rubber, Foam rubber, Laminates, Rubber cement.	
	Processing and manufacture of rubber products – Vulcanizing, Compounding, Rubber	
Unit 5	chemicals, Processing equipment and method, Tyres and tubes manufacture, Reclamation of	(06)
	rubber, Applications of rubber.	
Unit 6	Polymer and rubber industries in India – Development and scope of plastics, Synthetic Fibre, and elastomer industry in India.	(06)

Cou	rse Outcomes (CO): At the end of course students should be able to
	1 Understand polymer and rubber processing
	2 Formulate and analyze specific polymer & rubber Engineering problems using fundamental concepts.
	3 Select appropriate approximations for practical problem solving.
	4 Understand the future of polymer & rubber industry in Indian context.
	5 Understand advanced processes
Text	Books
1	. G.S. Misra, —Introductory Polymer Chemistry , Wiley Eastern Ltd., New Delhi, 1993.
2	D.C. Miles, —Polymer Technology , Chemical Publishing New York, 1979.
3	Fred Billmeyer, —A Text Book of Polymer Science , 3rd Edition, John Wiley and Sons, New York, 1984.
4	b.k.Sharma ,"Industrial Chemistry," 10 th edition, Krishna Prakashan,India Pvt. Ltd. Meerut, 1999
Refe	rence Books
1	Anil Kumar, S.K. Gupta, —Fundamentals of Polymer Science and Engineering , Wiley, 1978.
2	D.J. Williams, —Polymer Science and Engg . Prentice Hall, New York 1971.
3	F. Rodrigues, —Principles of Polymers systems , McGraw Hill, New York 1970
4	George Odian, —Principles of Polymerization , 2nd Edition John Wiley and Sons, New York 1981.
Usef	ul Websites
1	http://nptel.ac.in/
2	http://swayam.gov.in/
3	http://www.youtube.com/user/nptelhrd

	Tatyasaheb Kore Institute of Engineering & Technology, Warananagar					
	First Year M.Tech. Chemical Engineering Semester- I					
	Elective-II : Ch-PE-104 : Nanotechnology					
Teaching Scheme			Examination Scheme			
Lectures	03 Hrs/Week		ISE	40 Marks		
Tutorials			ESE	60 Marks		
Total Credits	03		TW			
			Duration of ESE	02 Hrs.30 Min.		

	e Objectives (CO):				
	Introduce fundamentals of Nanoscience and Nanotechnology.				
	Study the concept of nanomaterials.				
	Explain the synthesis, purification and application of nanomaterials.				
	Study the advances in nanotechnology				
5.	Intellectual property rights of nanotechnology				
	Course Contents	Hours			
Unit 1	Introduction to Nanotechnology: History, Importance of Nanoscales, Fundamental concepts (Bottom-up and Top-down processes).	(07)			
Unit 2	Application of Nanotechnology	(07)			
Unit 3	Nanomaterials: Fundamental concept of nanomaterial, Materials used in nanotechnology, carbon nanotubes-properties	(07)			
Unit 4	Synthesis, Purification, Application of Nanomaterials.	(06)			
Unit 5	Recent Advances in Nanotechnology	(07)			
Unit 6	Intellectual property rights on Nanotechnology: Importance of IP Protection, copy rights and trade secrets	(06)			
Course	e Outcomes (CO): At the end of course students will				
1. To	understand the application of Nanoscience in catalysis and green chemistry.				
2. De	emonstrate the understanding of length scale concepts, nanostructures and nanotechnology	ology.			
3. Cł	naracterization of nanomaterials.				
4. Ph	ysico chemical aspects of different types of nanostructures.				
scientif	stematically solve scientific problems related specifically to nano-technological materic and mathematical notation	-			
6. Id	entify the principles of processing, and synthesis of nonmaterial's and nanostructures				
Text Bo	ooks / Reference Books				
1 P	rinciples of Nanotechnology", Phani umar				
	3 "The Nanoscope" Encyclopedia of Nanoscience and Nanotechnology Vol I to Vol 6, Edited by Dr.Parag Diwan and Ashish Bharadwaj				

TatyasahebKore Institute of Engineering & Technology, Warananagar						
	First Year M.Tech Chemical Semester- I					
	Elective-II: Ch-PE-104: Green Technology					
Teaching Scheme			Examination Sche	me		
Lectures	03 Hrs/Week		ISE	40 Marks		
Tutorials			ESE	60 Marks		
Total Credits	03		TW			
			Duration of ESE	02 Hrs.30 Min.		

Cou	rse Objectives (CO):					
	1.To present different concepts of green technologies.					
	2. To acquire principles of Energy efficient technologies					
	3. To gain knowledge of the importance of life cycle assessment					
	4. To learn the importance of green fuels and its impact on environ	nment.				
	5 To learn zero pollution control aspect					
	Course Contents	Hours				
Unit	Engineering	(04)				
Unit	Introduction to Green Chemistry: Principles of Green Chemistry, Reasons for Green Chemistry (resource minimisation, waste minimisation, concepts), Green reactions solvent free reactions, Catalyzed (heterogeneous/homogeneous) reactions, MW/ Ultrasound mediated reactions, Bio catalysts etc	(08)				
Unit	Introduction to Pharmaceutical Process Chemistry: Introduction to process chemistry, the difference between synthesis and process,	(07)				
Unit	4 Rote design, Route optimization, DOE	(05)				
Unit	Role of Analytical Chemistry in Process Chemistry Role of Process Safety in Process Chemistry: TH classification, MSDS, Thermal Hazards, Waste segregation and disposal.	(07)				
Unit	Unit 6 Scale-up aspects including PE in Process Chemistry: Case Studies; New Initiatives: Micro reactors. (06)					
Cou	rse Outcomes (CO): At the end of course students will					
	1. Understand the principles of green chemistry and engineering					
	2. Design processes those are benign and environmentally viable					
	3. Design processes and products those are safe and hazard free					
	4. Learn to modify processes and products to make them green sa acceptable.	fe and economically				
	5. Apply the principles of green technology to specific industria	l processes				
Refer	rence Books					
1	James H.Clarke & Duncan Maacquarrie, Handbook of Green Chemistry and Technology, Wiley-Blackwell; 1 edition (2002)					
2						
3						
4						
5	Albert Matlack, Introduction to Green Chemistry (Hardcover), CRC Press; 1 edition (2	2001)				
6	Green Chemistry in the Pharmaceutical Industry, Peter Dunn (Editor), Andrew Wells (Williams (Editor), Wiley-VCH (2010)					
7	Kenneth M.Doxsee and James Hutchison Green Organic Chemistry: Strategies, Tools, and Laboratory Experiments (Paperback), Brooks Cole; 1 edition (May 7, 2003)					

TatyasahebKore Institute of Engineering & Technology, Warananagar First Year M.Tech Chemical Semester- I Elective-II: Ch-PE-104: Pharmaceutical Biotechnology **Teaching Scheme Examination Scheme** 03 Hrs/Week Lectures **ISE** 40 Marks Tutorials **ESE** 60 Marks 03 TW **Total Credits Duration of ESE** 02 Hrs.30 Min. **Course Objectives (CO):** 1. To understand and evaluate the different pharmaceutical parameters of the current and future biotechnology related products on the market 2. Biotechnology products and their use in therapeutics and diagnostics will be discussed. The advantages of these products over conventional drugs will also be discussed To Develop skills in biotechnological techniques for obtaining and improving the quality of natural products. 4. Imparts knowledge of enzymes, biosensors, Diagnostic kit, Imparts knowledge of Bioprocess engineering and technology **Course Contents** Hours Drug Development in Pharmaceutical Process- Production of pharmaceuticals by genetically engineered cells (hormones, interferrons) - Microbial transformation Unit 1 (07)for production of important pharmaceuticals (steroids and semi-synthetic antibiotics) Techniques for development of new generation antibioticsl, Protein engineering, Unit 2 (06)drug design, drug targeting. Disease Diagnosis and Therapy, ELISA and hybridoma technology, DNA (06)Unit 3 vaccine, Gene Therapy, Toxicogenomics. Proteomics in Drug Development, Role of Proteomics in Drug Developmen. Unit 4 (05)Diagnosis of disease by Proteomics, Separation and identification techniques for Unit 5 (06)protein analysis, Development of antibody based protein assay for diagnosis. Diagnosis and Kit Development, Use of enzymes in clinical diagnosis, Use of Unit 6 biosensors for rapid clinical analysis, Diagnostic kit development for (06)microanalysis. Course Outcomes (CO): At the end of course students will 1. Understand the various techniques used in modern biotechnology. 2. Design research strategy with step by step instructions to address a research problem 3. Provide examples of current applications of biotechnology and advances in the different areas like medical, microbial, environmental, bioremediation, agricultural, plant, animal, and forensic 4. Demonstrate and Provide examples on how to use microbes and mammalian cells for the production of pharmaceutical products. 5. Explain the general principles of generating transgenic plants, animals and microbes

Refe	Reference Books		
1	Balasubramanian, Bryce, Dharmalingam, Green and Jayaraman (ed), Concepts in Biotechnology, University Press, 1996		
2	Epenetos A.A.(ed), Monoclonal antibodies: applications in clinical oncology, Chapman and Hall Medical, London		

	Tatyasah	eb Kore Institute of Engineering & Technology, Warananagar	
	I	First Year M.Tech Chemical Engineering Semester- I	
		Elective-III :PE- 105: Bio Process Engineering	
Teaching	g Scheme	Examination Scheme	
Lectures	03 Hrs/Week	ISE 40 Ma	rks
Tutorials		ESE 60 Ma	rks
Total Cre	edits 03	TW	
		Duration of ESE 02 Hrs	.30 Min.
Course	Objectives (CO):		
	1. Ap	ply engineering principles to address issues in bioprocesses	
	2. An	alyze and identify limiting factors in a bioprocess and Propose solutions to	address
	bio	logical and engineering problems	
	3. Exp	plain the aerobic and anaerobic fermentation processes	
	4. Des	scribe applications and solve problems relating to the use of enzymes for	ndustrial
	bio	processing	
	5. Det	termine and analyze Mass transfer in heterogeneous biochemical reaction	systems
	wit	h process parameter	
	6. Imp	prove chemical parameters in bioreactors	
		Course Contents	Hours
Unit 1	Review of fundamer	ntals of microbiology and biochemistry. Bioprocess principles: Kinetics	(06)
Umit 1	of biomass productio	on. Substrate utilization and product formation.	(06)
TI24 2	Batch and continuo	us cultures. Fed batch culture introduction. Fermentation processes.	(0.0)
Unit 2	General requirements	s of fermentation processes.	(06)

	An overview of aerobic and anaerobic fermentation processes. Examples of simple and		
TI\$4 /	complex media. Design and usage of commercial media for industrial fermentation. Thermal	(06)	
Unit 3	death kinetics of microorganisms. Heat sterilizations of liquid media. Filter stabilizations of	(06)	
	liquid mediaand air.		
	Enzyme technology- Microbial metabolism enzymes classification and properties. Applied		
Unit 4	enzyme catalysis-kinetics of enzyme catalytic reaction. Metabolic pathways. Protein synthesis in	(06)	
	cells. Bioreactor design and operations. Selection scale up operations of bioreactors.		
	Mass transfer in heterogeneous biochemical reaction systems. Oxygen transfer rates and		
Unit :	coefficients. Role of aeration and agitation in oxygen transfer. Heat transfer processes in	(06)	
	biological systems. Recovery and purification of products.		
	Introduction to instrumentation and process control in bioprocesses. Measurement of physical		
Unit	and chemical parameters in bioreactors. Monitoring and control of dissolved oxygen, pH,	(06)	
	Impeller speed and temperature in a stirred fermenter		
Cour	se Outcomes (CO): At the end of course students should be able to		
	1. Understanding of biological basics and bioprocessing		
	2. Understanding the difference between bioprocesses and chemical processes		
	3. Bioprocess design and operation		
	4. Choice of bioreactor		
	5. Heat & mass transfer considerations and scale up of bioprocesses		
	6. Introduction to bioprocess monitoring/control		
Text 1	Books		
1	M. L. Shuler, F. Kargi. Bioprocess engineering. 2nd edition. PHI. New Delhi. 2002.		
1	J. E. Bailey, D. F. Ollis. Biochemical engineering. 2nd edition. Mc Graw Hill Publication co.NY.1985		
2	Pauline M. Doran, Bioprocess Engineering Principles, Academic Press, 2001		

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar

First Year M. Tech Chemical Engineering Semester- I

Elective-III: PE- 105: Material Engineering

Teaching School	eme	Examination Scl	neme
Lectures	03 Hrs/Week	ISE	40 Marks
Tutorials		ESE	60 Marks
Total Credits	03	TW	
		Duration of ESE	02 Hrs.30 Min.

Course Objectives (CO):

- 1. Explain the engineering materials characterization
- 2. Explain Metallic phases and their properties
- 3. To understand the principles of optical and electron microscopy for study of macro and microstructure of materials.
- 4. Inspect properties through change in various parameters over composite materials
- 5. To gain knowledge in understanding the tools and techniques for studying the substructure and atomic structure of materials
- 6. To build an expertise in characterization of engineering materials.

	Course Contents	Hours
Unit 1	Engineering requirement of materials, atomic bonding, atomic arrangements, structural imperfections and atom movements, electronic structures & process binary alloys and equilibrium diagrams.	(06)
Unit 2	Metallic phases and their properties, phase transformations in iron carbon system.	(06)
Unit 3	Heat treatment, surface hardening, case hardening metals and their alloys, organic materials & their properties, ceramic phases and their properties, multiphase materials, reactions within solid materials.	(06)
Unit 4	Modification of properties through change in microstructure, corrosion, oxidation, thermal stability, radiation damage, composite materials	(08)
Unit 5	Crystallography, X-Ray Diffraction Methods, Reitveld Refinement, Neutron Diffraction, X-ray absorption, XRay Fluorescence spectroscopy, Electron Diffraction- diffraction pattern in specific modes.	(06)

	LEED and RHEED, Electron Optics, Electron Microscopy-Transmission and Scanning Electron
Unit	6 Microscopy, STM and AFM, Compositional analysis employing AES, ESCA and Electron Probe (06)
	Microanalysis.
Cour	rse Outcomes (CO): At the end of course students should be able to
	1. To review physics and chemistry in the context of materials science & engineering
	2. To describe the different types of bonding in solids, and the physical ramifications of these differences
	3. To describe and demonstrate diffraction, including interpretation of basic x-ray data.
	4. To promote an understanding of the relationship between material structure, processing and properties
	5. Gain important conceptual and operational understanding of a wide range of methods for
	characterizing Materials
	6. Gained a broad perspective on materials chemistry and physics
Refer	rence Books
1	James F. Shackelford, Introduction to Materials Science for Engineers, 7th Edition, Pearson Prentice
	Hall(2009)
2	W. D. Callister, Fundamentls of Materials Science and Engineering, Wiley (2007)
3	C. Kittle, Introductin to Solid State Physics, Wiley (2007)
4	R. W. Cahn and P. Haasen, Physical Metallurgy, North Holland (1996)
5	Bradley D. Fahlman Materials Chemistry, Kindle Edition 2008).
6	B.D.CullityElementS of X-ray Diffraction AddisionWesely Reading Mass 1978.
7	David D. Brandon and Wayne D. Kaplan Microstructural Characterization of Materials wiley
8	Dawn Bonnel Scanning Probe Microscopy and Spectroscopy: Theory, Techniques, and Applications 2000.
9	C. Julian Chen Introduction to Scanning Tunneling Microscopy Monographs on the Physics and
	Chemistry of Materials

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar
First Year M. Tech Chemical Engineering Semester- I
Elective-III :Ch – PE – 105 : Process and Equipment Design

Teaching Scheme			Examination Scheme		
Lectures	03 Hrs/Week		ISE	40 Marks	
Tutorials			ESE	60 Marks	
Total Credits	03		TW		
			Duration of ESE	02 Hrs.30 Min.	
Course Objectives (CO):					

Course Objectives (CO):

- 1 Define and describe the basic design procedure for an equipment.
- 2 Explain the use of formula and correlations used for designing of equipment.
- 3 Develop skills to make appropriate assumptions and ability to predict the data required for designing.
 - 4 Analysis and estimation of predicted data with calculated values.
 - 5 Judge the design parameters along with the permissible design guidelines.
 - 6 Discuss about trial and error estimations.

	Course Contents	Hours			
	Shell and Tube Heat exchanger: Classification, Shell and Tube side Heat Transfer				
Unit 1	Coefficients, Pressure drop, Fouling, Baffles, Passes Tubes Tube Sheet, Effectiveness, of				
	Heat exchanger, Heat Exchangers sizing For Heating or Cooling in agitated vessel.				
Unit 2	Heat Exchange equipment: Plate Heat Exchanger, Bayonet Heat Exchanger, Heat	(06)			
Unit 2	Regenerator, Thermic Fluid Heating System Design Consideration.	(00)			
	Heat Exchange equipment: Cooling Tower Design Consideration, Cooling Water Blow				
Unit 3	Down, Cooling Water Corrosion, Crossed flow induced Draft Cooling Tower, Evaporation,				
	Single and Multiple Effect forward and Backward Feed Evaporators.				
Unit 4	Reactor : Reactor Classification, Design Equation for Batch PFR and CSTR, Fluidized Bed Reactor, Scale Up.	(06)			
	Separation Equipment: Classifications of Separator, Design Procedure				
TI:4 5	For Gas Liquid Separator Oil Water Separator, Decanter, Gravity Separators, Centrifugal				
Unit 5	Separators Gas Cleaning Equipment: Cyclone Separator, Electrostatic Precipitator, Granular	(06)			
	Bed Filter, Hydro-cyclone.				
	Pipe lines: Pipe Thickness, Pipe diameter, Condensate Piping, Pipe Support, Design of				
Unit 6	Pipeline for Natural Gas, Transportation of Crude oil, Pipe Line in Sea Water, Pipeline	(06)			
	Design on Fluid Dynamics Parameters.				

Cou	rse Outcomes (CO): At the end of course students should be able to
	1 Recall their concepts in designing the chemical equipments
	2 Interpret causes of failure of chemical equipment
	3 Have awareness on advances in process engineering design of many process equipments
	4.Take part in remedial or preventive measurements to avoid failure of vessel with safe design Guide lines
	5 Evaluate and apply their ideas on dimensional analysis to explore the optimum design variables
	6 Test the process equipment with prior safety.
Text	Books
1	Process Design Of Equipments Vol1, 4th Edition by Dr. S .D. Dawande, Denett & Company Publication 2011
2	Process Design Of Equipments Vol2, 4th Edition by Dr. S. D. Dawande, Denett & Company Publication 2012
Refe	rence Book
1	Introduction to Process Engineering and Design 4th Reprint 2011, S. B. Thakore, B. I. Bhatt, Tata Mc Graw Hill, Education Pvt. Ltd, Delhi
Usef	ul Websites
1	http://nptel.ac.in/
2	http://swayam.gov.in/
3	http://www.youtube.com/user/nptelhrd

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar							
First Year M.Tech Chemical Engineering Semester- I							
	CH-LC-106: ADVANCED SEPARATION LABORATORY						
Teaching Scho	eme		Examination School	eme			
Lectures							
Tutorials			ESE (Oral)	25			
Practical	02Hrs/Week		TW	25			
Total Credits	02		Duration of ESE				
Course Objectives (CO):							
1.Learn new techniques of separation							
2.Learn possible cases of industrial application.							
3. Learn estimation of separation coefficient.							

	Course Contents	Hours				
1	Ultrafilteration a) Pilot scale	(04)				
2	Ultrafilteration a) Small scale	(04)				
2	Supported liquid membranes.	(04)				
3	Microfiltration of raw material	(04)				
4	Ion Exchange a) Resin	(04)				
5	Ion Exchange b) Equillibria	(04)				
6	Ion Exchange c) Column	(04)				
7	Electro coagulation	(04)				
8	Pressure swing Adsorption	(04)				
9	Electrostatic precipitator	(04)				
Cour	se Outcomes (CO): At the end of course students will get					
	1.Knowledgeof recent advances in separation techniques					
2. Ability to separate different chemical compounds.						
3. Ability to handle different advance equipments.						
	4.Considerably more in-depth knowledge of the major subject.					
	5.Deeper knowledge of Experimental methods					
	6. Knowledge of industrial methods used for the separation process	sses.				
Refe	rence Books					
1	C.J.King "Separation Processes" 2nd Ed., Tata McGraw Hill Publishing Co. Ltd., I	New Delhi, 1986.				
2	Sirkar K. & Winston H.O. "Membrane Hand Book" Van Nostrand Reinhold, New York, 1992.					
3	McCabe & Smith "Unit Operations of Chemical Engineering" 5th Ed., McGraw Hi	ll International .				
4	Richardson and Coulson, "Chemical Engineering Volume –II", Pergamon Press, 197	70.				
5	Schweitzer P.A, "Handbook of Separation Techniques for Chemical Engineering"					
	Book Co.,1986.					
6	Souri Rajan S. "Reverse Osmosis" Logos Press Ltd.					

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar						
	First Year M.Tech. Chemical Engineering Semester- I					
	Ch - SW - 107: Seminar – I					
Teaching Scheme Examination Schem			eme			
Lectures			ISE			
Tutorials			ESE (Oral)			
Practical 02Hrs/Week			TW	50		
Total Credits	Total Credits 01 Duration of ESE					

Солия	a Objectives (CO).			
Cours	e Objectives (CO): 1.To Identify, understand and discuss current, real-world issues.			
	2.To Distinguish and integrate differing forms of knowledge and approaches (e.g., humanities and sciences) with that of the student discipline (e.g., in agriculture, architecture, art, business, economic engineering, natural resources, etc.). And apply a multidisciplinar current, real-world issues.	t's own academic cs, education,		
	3. To Improve oral and written communication skills.			
	4. To Improve presentation skills			
	Course Contents	Hours		
1	Seminar-I should be based on the literature survey on any topic relevant to Design Engineering (should be helpful for selecting a probable title of the dissertation). Each student has to prepare a write up of about 25-30 pages of "A4" size sheets and submit it in IEEE format in duplicate as the term work. The student has to deliver a seminar talk in front of the faculty of the department and his classmates. The concerned faculty should assess the students based on the quality of work carried out, preparation and understanding of the candidates. Some marks should be reserved for the attendance of a student in the seminars of other students.	()		
Cours	e Outcomes (CO): At the end of course students will			
	1. Apply principles of ethical leadership, collaborative engagement behavior, respect for diversity in an interdependent world, and a summitment to advance and sustain local and global communities	ervice-oriented		
2. Learn and integrate. Through independent learning and collaborative study, attain, use, and develop knowledge in the arts, humanities, sciences, and social sciences, with disciplinary specialization and the ability to integrate information across disciplines.				
3. Think and create. Use multiple thinking strategies to examine real-world issues, explore creative avenues of expression, solve problems, and make consequential decisions				
	4.Communicate. Acquire, articulate, create and convey using erbal and non-verbal method of communication that der understanding in a complex society.			

SEMESTER-II

		Tatyasah	eb Kore Institute of Engineer	ring & Technology, W	aranana	gar	
		•	irst Year M.Tech. Chemical			<u> </u>	
			PCC-CH201: Advanc	ed Mass Transfer			
Teachi	ng Sche	eme		Ex	aminati	on Sche	eme
Lecture	es .	03 Hrs/Week		ISI	E		40 Marks
Tutoria	ls	01 hr/Week		ES	E		60 Marks
Total C	redits	04		TV	V		25 Marks
				Du	ration of	f ESE	02 Hrs.30 Min.
Course		ives (CO):					
1			of macroscopic and microscopi				
2		•	rious mass transfer operations				
3	process	ses.	oblems, based on fundamental a		matical	models (of chemical
			nematical predictions for multi-o	<u> </u>			
5			exchange, adsorption processes	•			
		se Contents				Hours	
Unit 1	 Physical-Chemical Phenomena: Diffusivity and mechanism, Diffusion dispersion, Diffusivity measurements and prediction in non- electrolytes and electrolytes, solubility of gases in liquids, Inter-phase mass transfer in two phase and multi component system. 				rsion,	(06)	
Unit 2	Mass transfer with Chemical reaction: Fluid-fluid reactions involving diffusion transfer, application of mass transfer to reacting systems Residence time distribution analysis, mass transfer coefficients, determination and prediction in dispersed multiphase contractors under the conditions of free forced convection, prediction of mean drop or bubble size of dispersion. (06)						
Unit 3	Contacting devices: Capacity and efficiency, energy requirements of separation process. Extractive distillation, Reactive distillation, cryogenic distillation and molecular distillation. (06)						
Unit 4	colum	ns, Multicompon quilibrium mode	llation: Mass transfer models, I ent distillation tray column, Disls, solving the model equations,	stillation in packed colur		(06)	

Unit 5	Adsorption, Ion exchange and chromatography: Adsorption, equilibrium considerations, pure gas adsorption, liquid adsorption, Ion exchange equilibrium, equilibrium in chromatography, Kinetic and transport considerations, external and internal transport, mass transfer in ion exchange and chromatography.	(06)					
Extraction: Supercritical fluid extraction, Supercritical fluid, phase Equilibria, industrial applications, residuum oil Supercritical process – decaffeination of coffe extraction of oil from seeds, residual oil Supercritical application (ROSE), Supercritical fluid chromatography.		(06)					
	e Outcomes (CO): At the end of course students will						
1.	Define various operations like distillation, extraction, leaching, Compare and classify various with or without chemical reaction	arious mass transfer					
2.	Design calculation of distillation column for the multi-component system						
3.	Analyze the problem of Separation by adsorption and design of absorber, chromatographics	phic separation					
4.	4. Evaluate the separation by liquid extraction, leaching used and justify the extract operation to choose for specific problem						
5.	Estimate final data for designing number of stages, Height of column in the operations						
6. Define various operations like distillation, extraction, leaching							
Text B	ooks						
1 '	'Separation process" by J. Sieder and Henley, Wileypublishers, 1998						
2 '	'Principles of Mass Transfer and Separation Process' Binay K Datta, EEE, PHI Pvt Ltd.						
3 '	'Unit operation in Chemical Engineering" 6 TH edition, McCabe Smith, Mc Graw Hill						
4 '							
5 "Mass Transfer Fundamentals and Applications", Anthony L. Hines & Maddox.							
	ence Books						
	'Transport Separations and Unit Operations" 3 rd edition, G.J.Geankoplis, Prentice Hall.						
	'Seperationprocess" by C. Judson King, McGrawHill,1982						
3 "Distillation", Matther Van Winkle, Mc Graw Hill, Book Company							
Useful	Websites						

Moocs/ Swayam/NPTEL Courses on Mass Transfer Operations I

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar First Year M.Tech. Chemical Engineering Semester- II M.Tech. (Chemical Engineering), Sem.-II **Ch-PCC-202 Chemical Process Control Teaching Scheme Examination Scheme** 03 Hrs/Week Lectures CIE 40 Marks 01 hr/Week **Tutorials ESE** 60 Marks TW Total 04 25 Marks Credits **Duration of ESE** 02 Hrs. 30 Min. **Course Objectives (CO):** CO1: Develop structured, logical control schemes for complex processes. CO2: Study dynamics of process and control behaviour. 3. CO3: Choose control configurations for standard operations. CO4: Estimate controller parameter setting. CO5: Understand type of controller that can be used for specific problem in chemical industry. CO6: Design digital control systems. **Course Contents** Hours Introduction To Feed Back Control: Concept of feedback Control, Types offeedback Controllers, Measuring Devises, Transmission Lines, Final ControlElements. Unit 1 (06)Dynamic Behavior Of Feedback Control System: Block Diagram and closed looped response, effect of P Control, I Control, D Control, and Composite Control Action on response of a controlled process. Mass transfer with Chemical reaction: Fluid-fluid reactions involving diffusion Stability Analysis Of Feedback System: Notion of Stability, the characteristics equation, Routh–Hurwitz Criterion for stability, Root locus analysis. Unit 2 (06)**Design Of Feedback Controller:** Outline of Design Problem, Simple Performance Criteria, Time integral performance criteria, Select the type of feedback Controller, Controller tuning Frequency Response Analysis Of Linear Process: Response of First Order System to Sinusoidal input, frequency response characteristics of a general linear system, Bode Diagram, Nyquist Plots. Design Of Feedback Control System Unit 3 (06)Using Frequency Response Technique Bode Stability Criteria, Gain and Phase Margin, Ziegler- Nicholas Tuning Techniques, Nyquist Stability Criteria.

Unit 4	Feed Back Control Of System With Large Dead Time Or Inverse Response : Processes with Large dead time, Dead Time compensation, Control of System with Inverse response. Control System With Multiple Loop: Cascade Control, Selective Control System, Split Range Control.	(06)	
Unit 5	Feed Forward And Ratio Control: Logic of Feed Forward Control, Problem of Designing feed forward controllers, Pretical Aspect on Design of Feed forward controllers, Feed forward-Feed Back Control, Ratio Control. Adaptive and Inferential control system: Adaptive Control, Inferential Control Introduction To Plant Wide Control:Plant Wide Control issues, Hypothetical plant for Plant wide control Studies, Internal Feedback of Material and Energy, Interaction of Plant Design and control system design.	(06)	
Unit 6	Plant Wide Control System Design: Procedures for Designs of Plant wide control systems, A Systematic procedure for plant wide control system design, Case studies: The Reactor Flash Unit Plant, Effect of Control Structure on Closed looped performance. Digital Process Control System: Hard ware and Software, Distributed Digital Control System, Analog and Digital Signals and Data transfer, Microprocessors and Digital Hardware in Process Control, Software Organization.	(06)	
Che	ace Books mical Process Control An Introduction To Theory And Practice- George Stephanopolous a, New Delhi2003	, Prentice Hall Of	
Process Dynamics And Control, Dale E Seborg, Yhomas F Edgar, Duncan A,Mellichamp- Wiley India2006 Process Control Modeling, Design And Simulation, B.Wayne Beqnette, Prentice Hall Of India, New 3 Dalb;2004			

First Year M.Tech. Chemical Engineering Semester- II Elective - IV

Ch-PE-203 Modern Reaction Engineering

Teaching Scheme		Examination Sche	me
Lectures	03 Hrs/Week	CIE	40 Marks
Tutorials		ESE	60 Marks
Total Credits	03	TW	
		Duration of ESE	02 Hrs.30 Min.

Course Outcome:

CO1: To understand the principles of designing reactors

CO2: To evaluate reaction rates in different types of reactors

CO3: To understand the design and operation of catalytic reactors

CO4: To design and modify rectors to make processes safe and efficient

CO5: Analyze multiple reactions carried out both isothermally and non-isothermally in flow, batch and semi batch reactors to determine selectivity and yield.

CO6: Describe the steps in a catalytic mechanism and how one goes about deriving a rate law, mechanism, and rate-limiting step that are consistent with experimental data.

	Course Contents	Hours
Unit 1	A brief review of Chemical kinetics and Ideal reactor.	(06)
Unit 2	Non Ideal flow and mixing: Mixing concept, RTD, Response measurement, segregated flow model, Dispersion model, Tank in Series model, recycle rector model, analysis non ideal reactor.	(06)
Unit 3	Heterogeneous reaction: Classification, Rate Controlling step, globale rate of reaction.	(06)
Unit 4	Fluid-solid Non Catalytic reaction: Sinking core model, untreated core model, kinetics of non catalytic reaction for spherical and cylindrical solid particles, Contacting patterns, Reactor design.	(06)
Unit 5	Fluid-Fluid Reaction: Gas-liquid reaction, practical ability of film theory, kinetic regime identification, kinetics of fluid-fluid reaction, Contacting patterns, Reactor design.	(06)

Unit	deactivation, catalyst regeneration.	(06)
	Design of heterogeneous catalyst: Isothermal and adiabatic fixed bed reactors, non-isothermal, non-adiabatic fixed bed reactor, Introduction to multiphase reactor design, two phase fluidized bed model, slurry reactor model, trickle bed reactor model.	
Refe	rence Books	
1	Octave Levanspeil, Chemicaal Reaction Engineering, Jhon Wiley, London	
2	S.M.Walas,ReactionKineticsforChemicalEngineers,McGrawHill,NewYark	
3	J.M.Smith, Chemical Reaction Kinetics, Mc GrawHill,1981	
4	Bischott and Fromment, Chemical Reactor Designandanalysis, Wesley-1982	
5	Fogler H.S, Ellement of Chemical Reactionengineering, prantice-hall19863	

	Tatyasaheb Kore Institute of Engineering & Technology, Warananagar				
	First Year M.Tech. Chemical Engineering Semester- II				
		Elective – IV			
	•	Ch-PE – 203 Catalysis and Surface Phenome	ena		
Teaching S	Scheme		Examination S	Scheme	
Lectures	03 Hrs/Week		CIE	40 Marks	
Tutorials			ESE	60 Marks	
Total Cred	its 03		TW		
			Duration of ES	E 02 Hrs.30 Min.	
	se Outcome:-				
		s of homogenous and heterogeneous catalysis, cata	alytic activity and	selectivity and the	
relevance t	o green chemistry and	technology			
CO2: To u	nderstand the kinetics	of homogenous and heterogeneous catalytic reacti	ions and catalytic	cycles	
CO3: To fa	amiliarize with the syn	thesis and characterization of catalysts			
CO4: To u	nderstand the applicat	ion and mechanisms of several types of catalysts			
		ss transfer effects on catalytic reactions.			
		types of reactors for conducting catalytic reactions			
C	Course Contents		I	Hours	
	Introduction of Catalysis: Classification of Catalysis - Homogeneous,				
	Heterogeneous, Bio	atalysts, Preparation of catalysis - Laboratory Tec	hniques,		
Unit 1 In	ndustrial methods, Tra	nsition models, Dual functional catalysts, Zeolites	, Enzymes,	(06)	
	Solid Catalysts, Po	wder Catalysts, Pellets, Composition, Active ingre	edients,		
	S	apportive materials, Catalysts activation.			

	Catalysts Characterization: Surface area measurements, BET Theory, Pore size			
	distribution, Porosimetry Chemisorption techniques, Static and dynamic methods,			
Unit 2		(06)		
C 111 2	Raman and Masbauar spectroscopies, Surfaceacidityandtoxicity, Activity, Lifetime,	(00)		
	Bulkdensity, Thermalstabilityetc.			
	Theories of Catalysts: Crystal structure and its defects, Geometric and electronic			
	factors, Analysis of transition model catalysis, Chemistry and thermodynamics of			
	adsorption, Adsorption isotherms - Langmuir model, Tempkin model, Freundich			
Unit 3	model, Elovich equation, Langmiur Hinshel - wood model, Rideal - Eely	(06)		
	mechanism, Reversible - irreversible mono and bimolecular reactions with and			
	without inerts, Determination of rate controlling steps, Inhibition, parameter			
	estimation.			
	Mass and Heat Transport in Porous Catalysts: Internal and external transport,			
Unit 4	fixed bed, Fluidized bed reactors, Effect of internal transport on selectivity.	(06)		
	Effectiveness factor and Thiele modulus.			
	Catalyst Deactivation: Poisons, sintering of catalysts, Pore mouth			
Unit 5	plugging and uniform poisoning models, Kinetics of deactivation, Catalyst	(06)		
	regeneration.			
	Industrial Catalysis: Industrial catalysts preparation methods, Typical industrial			
Unit (catalytic processes, Case studies, Catalytic deactivation prevention methods, New	(06)		
	techniques for catalyst characterization, Overall study.			
Refer	ence Books			
	Emmett, P.H "Catalysis Vol. I and II, Reinhold Corp.", New York,1954.			
2	"Smith, J.M "Chemical Engineering Kinetics", McGraw Hill,1971.			
	Thomas and Thomas - "Introduction to Heterogeneous Catalysts", Academic Press, London 1967			

First Year M.Tech. Chemical Engineering Semester- II

Elective – IV

Ch-PE-203 Down Stream Processing

Teaching Scheme		Examination Scheme	
Lectures	03 Hrs/Week	CIE	40 Marks
Tutorials		ESE	60 Marks
Total Credits	03	TW	
		Duration of ESE	02 Hrs.30 Min.

Course Outcome:-

- CO1: Understanding the fundamentals of downstream processing for biochemical product recovery.
- CO2: Assessing the impact of change on overall process performance
- CO3: Examining traditional unit operations, as well as new concepts and emerging technologies that are likely to benefit biochemical product recovery in the future.
- CO4: Understanding analytical and process validation issues that are critical to successful manufacturing
- CO5: Strategies for biochemical process analysis and synthesis.

CO6: Design and operation of unit processes with centrifugation, chromatography, filtration, and membrane processes

Course Contents

Hours

	Course Contents	Hours
Uni	Requirement of Downstream Processing: Basic concepts of separation Technology, Overview of a bioprocess including upstream and downstream processing, Importance of downstream processing in biotechnology, characteristics of biological molecules, New Separation process in modern biotechnology; Separation characteristics of proteins and enzymes – size, stability & other biological properties; Selection of purification methodologies, Characteristics of fermentation broth & its pretreatment.	(06)
Uni	Centrifugation; Sedimentation; Flocculation.	(06)
Uni	Biomass Removal and Disruption: Biomass removal and disruption: Cell disruption by Mechanical and non mechanical methods, Chemical lysis, Enzymatic lysis, physical methods, Sonication, Types of Homogenizers, Centrifugation; Sedimentation; Flocculation.	(06)
Uni	Membrane Based Separation: Membrane based purification: icrofiltration, Ultrafiltration, Reverse osmosis (UF and RO); Dialysis; Electrodialysis; Diafiltration; Pervaporation; Perstraction, Biotechnological application, Structure and characteristics of membranes; Liquid membranes; Supported liquid membrane; Membranereactors. RO); Dialysis; Electrodialysis; Diafiltration; Pervaporation; Perstraction, Biotechnological application, Structure and characteristics of membranes; Liquid membranes; Supported liquid membrane; Membranereactors	(06)

	Separation by Adsorption and Chromatography: Types of adsorption; adsorbents types, their preparation and properties, Types of adsorption isotherms and their importance; Chromatography: general theory, partition coefficients, zone spreading, resolution and plate height concept and other chromatographic terms and parameters; chromatographic method selection;				
Unit	selection of matrix; separation based on size, charge, hydrophobicity and affinity: Gel filtration, Ion exchange chromatography, Affinity chromatography, IMAC chromatography; Covalent chromatography; Reverse phase chromatography (RPC) and hydrophobic interaction chromatography (HIC), HPLC, role of HPLC in protein characterization; Chromatofocussing; Polishing of Bioproducts by Crystallization of small and large molecules, drying andFormulations.	(06)			
Unit	Case Studies: Baker's yeast, Ethanol, Power alcohol, Citric acid, Intracellular proteins, Penicillin, Streptomycin, Insulin, Casein, interferon, Large scale separation and purification of <i>E.coli</i> , yeast, Recombinant products.	(06)			
Refe	rence Books				
1	E L V Harris and S. Angal, Protein Purification Methods, Ed. IRL Press at Oxford Univers	ity Press,1989			
2	P.A. Belter, E.L. Cussler and Wei-Shou Hu., Bioseparations-Downstream Processing for Biotechnology, Wiley-Interscience Publication, 1988.				
3	J.E.Baileyand D.F.Ollis,BiochemicalEngineeringFundamentals,2ndEdition,Mc-Graw Hill, Inc.,1986				
4	ComprehensiveBiotechnology"Vol.2Ed.:M.Moo-Young(1985)				
5	Seperation, Recoveryand Purificationin Biotechnology, Aenjo J.A.and J.Hong				
6	Priniciples of fermentation technology" by P F Stanbury and A Whitaker, Pergamonpress (1984)				
7	"Biotreatment, Downstream Processing and Modeling" (Advances in Biochemical Engineering/Biotechnology, Vol 56) by T. Schepleretal, Springer Verlag				
8	Downstream Processing" by J.P. Hamel, J.B. Hunter and S.K. Sikdar, American Chemical Society				
9	Protein Purification" by M.R. Ladisch, R.C. Wilson, C.C. Painton and S.E. Builder, American Chemical society, Verlag				
10	Chromatographic and Membrane Processes in Biotechnology" by C.A. Costa and J.S. Cabral, Kluwer, Academic Publisher				
11	Protein purification: Principle and practice, third edition, Robert k. Scopes, Springer, editor: Charles R.Cantor				

First Year M.Tech. Chemical Engineering Semester- II

Elective – IV

Ch-PE-204 COMPUTATIONAL FLUID DYNAMICS

Teaching Scheme		Examination Sche	me
Lectures	03 Hrs/Week	CIE	40 Marks
Tutorials		ESE	60 Marks
Total Credits	03	TW	
		Duration of ESE	02 Hrs.30 Min.

Course Outcome:-

CO1: Provide the student with a significant level of experience in the use of modern CFD software for the analysis of complex fluid-flow systems.

CO2: Understand solution of aerodynamic flows. Appraise & compare current CFD software. Simplify flow problems and solve them exactly

CO3: Define and setup flow problem properly within CFD context, performing solid modelling and producing grids via meshing tool

CO4: Understand both flow physics and mathematical properties of governing Navier-Stokes equations and define proper boundary conditions for solution

CO5: Develop an awareness of the power and limitations of CFD.

CO6: Place CFD in the context of a useful design tool for industry and a vital research tool for thermos-fluid research across many disciplines.

	Course Contents	Hours
Unit 1	Governing Differential Equation And Finite Difference Method: Classification, Initial and Boundary conditions – Initial and Boundary Value problems Finite difference method, Central, Forward, Backward difference.	(06)
Unit 2	Uniform and non uniform Grids, Numerical Errors, Grid Independence Test.	(06)
Unit 3	Conduction Heat Transfer Steady one-dimensional conduction, two and three dimensional steady state problems, Transient one-dimensional problem, Two-dimensional Transient Problems	(06)
Unit 4	Incompressible Fluid Flow Governing Equations, Stream Function – Verticity method, Determination of pressure for viscous flow, SIMPLE Procedure of Patankar and Spalding, Computation of Boundary layer flow, finite difference approach.	(06)
Unit 5	Convection Heat Transfer And Fem Steady One-Dimensional and Two-Dimensional Convection — diffusion, Unsteady one- dimensional convection — diffusion, Unsteady two-dimensional convection — Diffusion — Introduction to finite element method — solution of steady heat conduction by FEM — Incompressible flow — simulation by FEM.	(06)
Unit 6	Algebraic Models – One equation model, $K-\varepsilon$ Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes.	(06)

Refe	rence Books
1	Muralidhar, K., and Sundararajan, T., "Computational Fluid Flow and Heat Transfer", Narosa Publishing House,
1	New Delhi,1995.
2	Ghoshdasdidar, P.S., "Computer Simulation of flow and heat transfer" Tata McGraw-Hill Publishing Company
	Ltd.,1998.
3.	Subas, V.Patankar "Numerical heat transfer fluid flow", Hemisphere PublishingCorporation, 1980.
4	Taylor, C and Hughes, J.B. "Finite Element Programming of the Navier-Stokes Equation", Pineridge Press Limited,
4	U.K.,1981.
5	Anderson, D.A., Tannehill, J.I., and Pletcher, R.H., "Computational fluid USA, 1984
6	Fletcher, C.A.J. "ComputationalTechniquesfor Fluid Dynamics 1" Fundamental and General Techniques,
0	Springer – Verlag, 1987.
7	Fletcher, C.A.J. "ComputationalTechniques for fluid Dynamics 2"Specific Techniques for Different Flow
/	Categories, Springer – Verlag,1987.
8	Bose, T.X., "Numerical Fluid Dynamics" Narosa Publishing House, 1997

	Tatyasaheb Kore Institute of Engineering & Technology, Warananagar				
	First Year M.Tech. Chemical Engineering Semester- II				
		Elective – IV			
		Ch-PE-204 Energy Engineering			
Teachin	ng Scheme		Examination	Scheme	
Lectures	s 03 Hrs/Week		CIE	40 Marks	
Tutorial	s		ESE	60 Marks	
Total Cr	redits 03		TW		
			Duration of ES	SE 02 Hrs.30 Min.	
Co	urse Outcome:-				
		ous types of energy resources and the principles for c	onverting from	n one form to another.	
		gy use over the lifecycle of a product or project.			
CO3: Co	ollect data from thermo	lynamic systems and evaluate the performance of the	system.		
		derations of energy production, management and cons	servation includ	ding the environmental	
and eco	nomic impact of commo	on fuels.			
CO5: U	nderstanding Energy ma	inagement methods. Rational energy consumption. En	nergy conserva	ntion. Waste heat	
recovery					
CO6: U	nderstanding Energy co	nservation in industry.			
	Course Contents			Hours	
	Energy, units of energy, conversion factors, general classification of energy, Historical				
	Events, Energy requirement of Society in Past and Present situation, World energy				
Unit 1	resources and energy consumption, Indian energy resources and energy consumption,			(06)	
	energy crisis, energy alternatives, future possibilities of energy need and availability,		•	(00)	
	•	conventional energy resources, internal combustion e	_		
	steam turbines, gas tur	bines, hydroturbines (thermodynamic cycles not inclu	ıded).		

	Nuclear reactors, thermal, hydel and nuclear power plants (process outlines only),					
Unit	efficiency, merits and demerits of the above power plants, combined cycle power	(06)				
	plants, fluidized bed	(00)				
	combustion, small hydropower.					
	Solar energy, solar thermal systems, flat plate collectors, focusing collectors, solar					
	water heating, solar cooing, solar distillation, solar refrigeration, solar dryers, solar	(0.6)				
Unit		(06)				
	photovoltaic power generation, solar energy application in India, energy plantations,					
	wind energy, types of windmills, types of wind rotors,					
TT •4	Darrieus rotor and Gravian rotar, wind electric power generation, wind power in India,	(0.6)				
Unit		(06)				
	conversion, tidal energy conversion, geothermal energy.					
	Biomass energy resources, thermochemical and biochemical methods of biomass					
	conversion, combustion, gasification, pyrolysis, biogas production, ethanol, fuel cells, alkaline fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel					
Unit	cell, solid polymer electrolyte fuel cell, magneto hydro dynamics, open cycle and	(06)				
	closed cycle systems, magneto hydro dynamic power generation, energy storage routes					
	like thermal energy storage, chemical, mechanical storage, electrical storage.					
	Energy conservation in chemical process plants, energy audit energy saving in heat					
	exchangers, distillation columns, dryers, ovens and furnaces and boilers, steam					
Unit		(06)				
СШС	industry, cogeneration, pinch technology, recycling for energy saving, electrical energy	(00)				
	conservation in chemical process plants, environmental aspects of energy use.					
	conservation in enemical process plants, environmental aspects of energy use.					
Refe	rence Books					
1	Goldmberg J., Johansson, Reddy A.K.N. & Williams R.H., Energy for Sustainable World,	JohnWilev				
2	Bansal N.K., Kleeman M. & Meliss M., Renewable Energy Sources & Conversion Tech., Ta					
3.	Sukhatme S.P., Solar Energy, Tata McGrawHill	u Nie Grawiini				
4	Mittal K.M., Non-Conventional EnergySystems, WheelerPub					
5	Venkataswarlu D., Chemical Technology, I, S.Chand					
6	PandeyG.N.,ATextBookonEnergySystemand Engineering,VikasPub.					
7	Rao S. & Parulekar B.B., EnergyTechnology, KhannaPub.					
8	RaiG.D., Non-Conventional Energy Sources, Khanna Pub.					
9 Nagpal G.R., Power Plant Engineering, KhannaPub.						
Text	Text Books					
1	Power Plant Engineering, P. K. Nag Tata McGraw Hill 2nd edn2001.					
2	Power Plant Engineering, Domakundawar, Dhanpath Rai sons.2003					
L						

M.Tech. (Chemical Engineering), Sem.-II

Ch-PE-204 (Elective IV) Advanced Separation Techniques

Teaching Scheme		Examination Scheme	
Lectures	03 Hrs/Week	CIE	40 Marks
Tutorials		ESE	60 Marks
Total Credits	03	TW	
		Duration of ESE	02 Hrs.30 Min.

Course Outcome:-

CO1: Apply modern separation techniques in various applications.

CO2: To design a process based on separation principles.

CO3: Appropriate application of separation steps in industrial processes.

CO4: To compute the kinetics of various types of separation processes.

CO5: Analyze and design pervaporation, chromatography and dialysis based separation processes.

CO6: Analyze and design novel membranes for intended application.

	Course Contents	Hours
Unit 1	General Review of Conventional process, recent advances in separation technique based on size, surface properties ionic properties and other special characteristics of substance.	(04)
Unit 2	Filtration Process Concept, Theory and Equipment used in Cross flow filtration, Cross flow electro filtration, duel functional filtration surface based solid-liquid separation involving stead liquid, Siroflocfilter.	(04)
Unit 3	Membrane filtration Types and choice of membranes, Plates and frame, tubular, Spherial wounded and hollow fibre membrane, reactor and their relative merits, commercial, pilot plant, and labortary membranes, Permeates involving analysis, reverse osmosis, nano filtration, ultrafiltration, microfiltration and donan analysis, economics of membrane operation, cevanic membrane.	(05)
Unit 4	Separation by Adsorption technique Mechanism, Choice and type of adsorbent, normal adsorption technique, affinity chromatography, and immune chromatography, types of equipment and commercial processes, recent advance and processes, Economics.	(05)
Unit 5	Ionic Separation: Controlling factor, application, type of equipment used in electrophoresis, dielectrophoresis, ion exchange chromatography, and electrodialysis, commercial processes.	(05)

Unit	Other technique: Separation Involving lyophilisation, pervaporation and permeation technique for solid, liquid, and gases, industrial variables and examples, zone melting, add crystallization, other separation processes, supercritical fluid extraction, oil spillage management.	(05)				
Refer	Reference Books					
1	LaceyR.E andS.loaeb,industrialprocessingwithmembrane,wiely,newyark-1972					
2	KingC.J,Separationprocesses,TataMc-Graw-hillpublicationCo.ltd-1982					
3	Schoew, HM, New Chemical Engineering Separation technique, future sciencepublisher 1972					
4	4 Ronald W.Ronssel, Handbook of process Technology, wily new York 198					

	Tatyasaheb Kore Institute of Engineering & Technology, Warananagar				
	First Year M.Tech. Chemical Engineering Semester- II				
	OEC-CH205: Project Management				
Teaching Scho	Teaching Scheme Examination Scheme				
Lectures	03 Hrs/Week		ISE	40 Marks	
Tutorials			ESE	60 Marks	
Total Credits 03			TW		
			Duration of ESE	02 Hrs.30 Min.	

Course Obje	ectives : -
	1 To study concept of Project Management and skills
	2 Ability to understand organization structure
	3 To acquaint with staffing the project office and team
	4 Ability to understand controlling parameters and human behaviour
	5 To study and develop a project scope
	6 Ability to use CPM and PERT methods

	Course Contents	Hours
Unit 1	Project Management growth	
	Concept and Definition, General System Management, Project management,	
	Resistance to Change, System programmed, Project product vs project management a	(05)
	definition focus of success, Face of failure, Project life cycle, Project management	
	methodologies,Corporate culture	

Unit 2	Organizational structure Introduction, organizational work flow, Traditional organization, Developing work, integration position, Project coordinator, Projected organization, Matrix structure, Strong weak balanced matrix, Project management Expertise, Studying tips for the PMF (Project Management CertificateExam)	(05)
Unit 3	Organizing and staffing the project office and team The staffing environment, Selecting the project manager, Skill requirement for project and programme manager, Organizational staffing progress, The project office, Project organizational chart.	(05)
Unit 4	management function Controlling, Directing ,Project Authority, Interpersonal life cycle, leadership in a project management environment, life cycle leadership, organizational impact ,employee manager problem, management pitfalls, Communication, Human behavior education, Management policies and procedure.	(05)
Unit 5	Special Topic Performance measurement, Financial compensation and rewards, Critical Issues with rewarding project team, mega Project, Morality, Ethics and corporate culture, Professional Responsibility, Internal Prternership, External Prternership, Training and education, Integrated project team, Virtual project team, Break through	(05)

Course	e Outcomes (CO): At the end of course students will
1.	Define various operations like distillation, extraction, leaching, Compare and classify various mass transfer operations with or without chemical reaction
2.	Design calculation of distillation column for the multi-component system
3.	Analyze the problem of Separation by adsorption and design of absorber, chromatographic separation
4.	Evaluate the separation by liquid extraction, leaching used and justify the extract operation to choose for specific problem
5.	Estimate final data for designing number of stages, Height of column in the operations
6.	Define various operations like distillation, extraction, leaching

Text BookS

1 "A system Approach to planning, Scheduling, Controlling, by Harolad Kerzner 10th Ed Willy

Reference Books

1	Project Management Theory and Practices Crary L Richardsion, CRC press, Taylor and Franas Group, boca ration London, Newyark
2	Project Management for Engineer business, technology 4 th Ed, Jhon M Nicholas, Herman

First Year M.Tech. Chemical Engineering Semester- II

Ch-OEC-205 Operation Research

Teaching Scheme		Examination Scheme	
Lectures	03 Hrs/Week	CIE	40 Marks
Tutorials		ESE	60 Marks
Total Credits	03	TW	
		Duration of ESE	02 Hrs.30 Min.

Course Outcome:-

- CO1: Identify and develop operational research models from the verbal description of the real system.
- CO2: Understand the mathematical tools that are needed to solve optimisation problems.
- CO3: Use mathematical software to solve the proposed models
- CO4: Develop a report that describes the model and the solving technique, analyse the results and propose recommendations in language understandable to the decision-making processes in Management Engineering.
- CO5: Conduct and interpret post-optimal and sensitivity analysis and explain the primal-dual relationship.
- CO6: Define and formulate linear programming problems and appreciate their limitations.

	Course Contents	Hours
Unit 1	Introduction to Operations Research: Basics definition, scope, objectives, phases, models and limitations of Operations Research. Linear Programming Problem – Formulation of LPP, Graphical solution of LPP. Simplex Method, Artificial variables, big-M method, two-phase method, degeneracy and unbound solutions	(06)
Unit 2	Transportation Problem. Formulation, solution, unbalanced Transportation problem. Finding basic feasible solutions – Northwest corner rule, least cost method and Vogel's approximation method. Optimality test: the stepping stone method and MODImethod.	(06)
Unit 3	Assignment model. Formulation. Hungarian method for optimal solution. Solving unbalanced problem. Traveling salesman problem and assignment problem.	(06)
Unit 4	Sequencing models. Solution of Sequencing Problem – Processing n Jobs through 2 Machines – Processing n Jobs through 3 Machines – Processing 2 Jobs through m machines – Processing n Jobs through m Machines.	(06)
Unit 5	Dynamic programming. Characteristics of dynamic programming. Dynamic programming approach for Priority Management employment smoothening, capital budgeting, Stage Coach/Shortest Path, cargo loading and Reliability problems.	(06)
Unit 6	Games Theory. Competitive games, rectangular game, saddle point, minimax (maximin) method of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point – mixed strategy for 2 X 2 games.	(06)

Text	Text Books			
1	P. Sankara Iyer, "Operations Research", Tata McGraw-Hill,2008.			
2	A.M. Natarajan, P. Balasubramani, A. Tamilarasi, "Operations Research", Pearson Education, 2005.			
Refe	Reference Books			
1	JKSharma., "OperationsResearchTheory&Applications,3e", MacmillanIndiaLtd,2007.			
2	P. K. Gupta and D. S. Hira, "Operations Research", S. Chand & co.,2007.			
3				
4	N.V.S. Raju, "Operations Research", HI-TECH,2002.			

	Tatyasahel	o Kore Institute of Engineering & Technology, War	ananagar	
	First Ye	ar M.Tech. Chemical Engineering Semester- II Pra	actical	
		Ch-LC-206 Analytical Laboratory		
Teaching Sche	me		Examination Sche	eme
Practical's	04 hr/Week		ESE	
Total Credits	02	,	TW	25 Marks
			Duration of ESE	
Course O	utcome:-			
CO1: Apply ma		and chemical concepts to routine tasks such as the	analysis and synth	esis of chemical
CO2: Describe	and understand the ca	apabilities and limitations of instrumental methods		
CO3: Demonstr	rate competence in co	ollecting and interpreting data in the laboratory.		
CO4: Apply pri	nciples of chemistry	to the observations of substances experiencing phys	sical or chemical cl	nanges.
CO5: Laborato	ry skills for the purp	pose of collecting, interpreting, analyzing, and rep	oorting (in written	form) chemical
data.				
CO6: Conduct	basic manual quantita	ative and qualitative analyses accurately, using prese	cribed laboratory p	rocedures.

Course Contents

- 1. Analysis Of Given Sample by using Gas Chromatography
- 2. Detail study and Analysis of High Performance Liquid Chromatography(HPLC)
- 3. Instrument Exploration :Scanning Electron Microscopy(SEM)
- 4. Measurement , analyze, and discussion of three different types of Samplevia Thermogravimetric Analysis, orTGA
- 5. Determination of the amount of carbon monoxide in exhaust samples byFTIR spectroscopy
- 6. Spectrophotometry: Absorption spectra and the use of light absorption tomeasure concentration
- 7 Analysis by using GelElectrophoresis

	Tatyasal	nebKore Institute of Engi	ineering & Technology,	Waranana	gar	
	F	First Year M.Tech Chemi	cal Engineering) Semes	ster- II		
		Ch-SW-20	7: Seminar – II			
Teaching Scho	eme			Examinati	on Sche	me
Lectures				ISE		
Tutorials				ESE (Oral)	
Practical	02Hrs/Week			TW		50
Total Credits	01			Duration of	f ESE	
Course Obje	ectives (CO):					
	1.To	Identify, understand and	discuss current, real-wo	orld issues.		
		Distinguish and integrate				
	approa	ches (e.g., humanities an	nd sciences) with that of	the studen	t's own	academic
	discipl	ine (e.g., in agriculture, a	architecture, art, busines	ss, economi	ics, educ	cation,
	engine	ering, natural resources,	etc.). And apply a multi	idisciplinar	y strateg	gy to address
	current	t, real-world issues.				
	3. To I	mprove oral and written	communication skills.			
	4. To I	mprove presentation skil	ls			
		Course Conte	nts			Hours

	Seminar II shall be based on tentative topic of dissertation such as review paper on some specific well defined area/ specialized stream of Mechanical Engineering. Each student has to prepare a write up of about 25-30 pages of "A4" size sheets and submit it in IEEE format in duplicate as the term work.	
1	The student has to deliver a seminar talk in front of the faculty of the department and his classmates. The faculty, based on the quality of work, carried out, preparation and understanding of the candidates. Some marks should be reserved for the attendance of a student in the seminars of other students.	()
<u> </u>		
Course	e Outcomes (CO): At the end of course students will	
	1. Apply principles of ethical leadership, collaborative engagement	
	behavior, respect for diversity in an interdependent world, and a s	
	commitment to advance and sustain local and global communities	
	2. Learn and integrate. Through independent learning and collaboration	•
	use, and develop knowledge in the arts, humanities, sciences, and disciplinary specialization and the ability to integrate information	•
	 Think and create. Use multiple thinking strategies to examine issues, explore creative avenues of expression, solve problems, ar decisions 	

	Tatyas	ahebKore Institute of Enginee	ering & Technology, Waranana	gar
		First Year M.Tech Chemical	Engineering Semester- II	
		Ch-208: Compr	rehensive Viva	
Teaching Scho	eme		Examinati	on Scheme
Lectures			ISE	
Tutorials			ESE (Oral) 25
Total Credits			TW	
			Duration of	f ESE
Course Obje	ctives (CO):			
	1.To	verify the continuous assessm	nent and performance of studen	ts by external examiner
	and in	nternal examiner.	-	-
		Course Contents		Hours

articulate,

create

using erbal and non-verbal method of communication that demonstrates respect and

and

4. Communicate. Acquire,

understanding in a complex society.

convey

intended

1	The students have to prepare on all subjects which they have studied in and II nd semesters The viva will be conducted by the External/Internal Examiner jointly and their appointments will be made by institute. The indepth knowledge, preparation and subjects understanding will be assessed by the Examiners.	()

Course Outcomes (CO): At the end of course students will

1. Verify their knowledge based on the subjects they have studied in Semester-I and Semester-II.

SEMESTER-III

		Tatyasaheb 1	Kore Institute of En	gineering & Technology	, Warananagar	
		First	Year M. Tech Che	emical Engineering Seme	ester- II	
			Ch-MC-301 Re	esearch Methodology		
Teachin	g Scheme				Examination Sc	heme
Lectures	Lectures 02 Hrs/Week ISE					
Tutorials	s				ESE	60 Marks
Total Cr	redits 0	2			TW	
					Duration of ESE	02 Hrs.30 Min.
Course	Objective	ves (CO):				
		1 Understand so	ome basic concepts	of research and its meth	odologies	
			ropriate research to			
			.	esearch problem and para	meters	
			ject proposal (to ur conduct research (a	advanced project) in a me	ore appropriate m	nanner
					appropriate in	
T		6 Understanding	course Co	earch report and thesis		Hours
						110015
	Objectives and types of research: Motivation and objectives – Research					
Unit 1	methods vs Methodology. Types of research— Descriptive vs. Analytical,				(04)	
	Applied	vs. Fundamen	ntal, Quantitative	vs. Qualitative, Con-	ceptual vs.	(- ,
	Empirica	al.				

	D	
Unit 2	Research Formulation – Defining and formulating the research problem - Selecting the problem - Necessity of defining the problem - Importance of literature review in defining a problem – Literature review – Primary and secondary sources – reviews, treatise, monographs- patents – web as a source – searching the web - Critical literature review – Identifying gap areas from literature review - Development of working hypothesis.	(04)
Unit 3	Research design and methods – Research design – Basic Principles- Need of research design — Features of good design – Important concepts relating to research design – Observation and Facts, Laws and Theories, Prediction and explanation, Induction, Deduction, Development of Models. Developing a research plan - Exploration, Description, Diagnosis, and Experimentation. Determining experimental and sample designs.	(04)
Unit 4	Data Collection and analysis: Execution of the research - Observation and Collection of data - Methods of data collection - Sampling Methods- Data Processing and Analysis strategies Data Analysis with Statistical Packages - Hypothesis-testing - Generalization and Interpretation.	(04)
Unit 5	Reporting and thesis writing – Structure and components of scientific reports - Types of report – Technical reports and thesis – Significance – Different steps in the preparation – Layout, structure and Language of typical reports – Illustrations and tables - Bibliography, referencing and footnotes - Oral presentation – Planning – Preparation – Practice – Making presentation – Use of visual aids - Importance of effective communication.	(04)
Unit 6	Application of results and ethics - Environmental impacts - Ethical issues - ethical committees - Commercialization - Copy right - royalty - Intellectual property rights and patent law-Trade Related aspects of Intellectual Property Rights-Reproduction of published material Plagiarism - Citation and acknowledgement - Reproducibility and accountability	(04)

Assignments: Each student will submit minimum 4 assignments based on the different topics in consultation with faculty, in the area of research methodology keeping track of the recent trends in research and developments. At the end of the semester one seminar on relevant topic of research.

Course Outcomes (CO): At the end of course students should be able to	
1 Identify comprehensive understanding of principal in demonstrating academic research	
2 Differentiate possible research resources and transform issue in broader perspective	
3 Communicating research in own words to create new meaning	
4 Choose and propose a good research proposal in systematic way.	
5 Apply appropriate research techniques and tools from different approached with profound intellectual integrity and ethics	
Text Books	
Kothari, C.R., 1990. Research Methodology: Methods and Techniques. New Age International.	
Reference Books	
Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., 2002. An introduction to Research	
Methodology, RBSA Publishers.	
2 Sinha,S.C.and Dhiman,A.K.,2002.Research Methodology, Ess Ess Publications.2 volumes	
Trochim, W.M.K., 2005. Research Methods: the concise knowledge base, Atomic Dog Publishing.	
4 Wadehra, B.L. 2000. Law relating to patents, trademarks, copyright designs and geographical	
indications. Universal Law Publishing.	

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar First Year M.Tech. Chemical Engineering Semester- III **Ch-MC-302 Industrial Training Teaching Scheme Examination Scheme** Lectures **ISE ESE Tutorials** Practical 04 Hrs/Week TW50 **Total Credits** 02 **Duration of ESE Course Objectives (CO):** 1. To expose the students to actual working environment and enhance their knowledge and skill from what they have learned in the college. 2. To instill the good qualities of integrity, responsibility and self confidence. All ethical values and good working practices must be followed by student. 3.To help the students about the safety practices and regulations inside the industry and to instill the spirit of teamwork and good relationship between students and employees. **Course Contents** Hours The student has to prepare the report of training undergone in the industry during vacation after semester II. It shall include the brief details of assignment completed by the candidate and general observation and analysis. The identified areas for undertaking the dissertation work shall Unit 1 form part of report. The term work marks should be based on report and departmental oral exams. The training should be of minimum two weeks from reputed industries and certificate of the same should be a part of the report. Course Outcomes (CO): At the end of course students will 1. Ability to demonstrate the use, interpretation and application of an appropriate international engineering standard in a specific situation. Ability to analyze a given engineering problem, identify an appropriate problem solving methodology, implement the methodology and propose a meaningful solution. Ability to apply prior acquired knowledge in problem solving Ability to identify sources of hazards, and assess/identify appropriate health & safety measures Ability to work in a team and take initiatives

Ability to effectively communicate solution to problems (oral, visual, written)

Ability to adopt a factual approach to decision making andto take engineering decision

Ability to manage a project within a given time frame

7

Second Year M.Tech Chemical Engineering, Semester-III

Ch - SLC/AC -303: Mooc/Swayam

Teaching Scheme		Examination Scheme	
Lectures		ISE	
Tutorials		ESE	
Total Credits		TW	50
		Duration of ESE	

Course Objectives (CO):

1. To teach use of Mooc/Swayam as a learning platform designed to provide educators, administrators and learners with a single robust, secure and integrated system to create personalized learning environment.

Students will be able to choose course of their choice from Mooc/swayam and to be acquaintance with recent developments in Chemical Engineering beyond syllabus	
The term work under this submitted by the student shall	
include.	
Work diary maintained by the student and countersigned by his guide.	
2) The content of work diary shall reflect the efforts taken by candidates for	
(a) Searching the suitable project work.	
(c) Design calculations etc. carried by the student.	
 The student has to make a presentation in front of panel of experts in addition to guide as decided by department head. 	
	include. 1) Work diary maintained by the student and countersigned by his guide. 2) The content of work diary shall reflect the efforts taken by candidates for (a) Searching the suitable project work. (b) Visits to different factories or organizations. (c) The brief report of feasibility studies carried to come to final conclusion. (d) Rough sketches (e) Design calculations etc. carried by the student. 3) The student has to make a presentation in front of panel of experts in addition to guide as decided by department

Course Outcomes (CO): At the end of course students will

Students will be able to choose course of their choice from Mooc/swayam and to be acquaintance with recent developments in Chemical Engineering beyond syllabus.

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar Second Year M.Tech Chemical Engineering, Semester-III Ch-PC-304: Dissertation Phase-I **Teaching Scheme Examination Scheme** Lectures **ISE** Tutorials ESE (Oral) 50 Practical 16Hrs/Week TW 50 Total Credits 08 **Duration of ESE** ----**Course Objectives (CO):** 1. To grow deeper knowledge, understanding, capabilities and attitudes in the context of the programme of study. 2. To investigate more deeply into and synthesise knowledge acquired in previous studies. **Course Contents** Hours The dissertation submitted by the student on topic already approved by academic council on basis of initial synopsis submitted by the candidate, shall be according to following guidelines. Format of dissertation report: The dissertation work report shall be typed on A4 size bond paper. The total No. of minimum pages shall not less than 60. Figures, graphs, annexure etc be as per the requirement. The report should be written in the standard format. 1. Title sheet Unit 1 2. Certificate 3. Acknowledgement 4. List of figures, Photographs/Graphs/Tables 5. Abbreviations. 6. Abstract

7. Contents.

8. Text with usual scheme of chapters.

appropriate place IEEE/ASME/Elsevier Format)

9. Discussion of the results and conclusions

Bibliography (the source of illustrative matter be acknowledged clearly at

Course Outcomes (CO): At the end of course students will

- 1. Design and engage in, an independent and sustained critical investigation and evaluation of a chosen research topic.
- 2. Systematically identify relevant theory and concepts, relate these to appropriate methodologies and evidence, apply correct techniques and draw suitable conclusions.
- 3. Involve in systematic finding and critical review of appropriate and relevant information sources
- 4.Understand and apply ethical standards of conduct in the collection and evaluation of data and other resources
- 5. Present research concepts and contexts clearly and effectively both in writing and orally

	•	Engineering & Technology, Warananagar		
	Second Year M.Tech C	Chemical Engineering, Semester-III		
	Ch-PC-401	: Dissertation Phase-II		
Teaching Scheme		Examination Scheme	Examination Scheme	
Lectures		ISE		
Tutorials		ESE (Oral)	100	
Practical	32Hrs/Week	TW	100	
Total Credits	16	Duration of ESE		
Course Obje	ctives (CO):			
1	. To grow deeper knowledge, understa	anding, capabilities and attitudes in the contex	kt of the programme	
(of study.			
	2. To investigate more deeply into and s	synthesise knowledge acquired in previous str	udies.	

	Course Contents	Hours
	The dissertation submitted by the student on topic already	
	approved by academic council on basis of initial synopsis submitted	
Unit 1	by the candidate, shall be according to following guidelines.	
	Format of dissertation report:	
	The dissertation work report shall be typed on A4 size bond paper. The total	
	No. of minimum pages shall not less than 60. Figures, graphs, annexure etc be as per the requirement.	
	The report should be written in the standard format. 1. Title sheet	
	2. Certificate	
	3. Acknowledgement	
	4. List of figures, Photographs/Graphs/Tables	
	5. Abbreviations.	
	6. Abstract	
	7. Contents.	
	8. Text with usual scheme of chapters.	
	9. Discussion of the results and conclusions	
	Bibliography (the source of illustrative matter be acknowledged clearly at appropriate place IEEE/ASME/Elsevier Format)	
	The students should publish at least one paper in a reputed journal (UGC approved/ SCOPUS Indexed etc.)	
	The student has to make a presentation in front of panel of experts in addition to guide as decided by department head	

Course Outcomes (CO): At the end of course students will

- 1. Design and engage in, an independent and sustained critical investigation and evaluation of a chosen research topic.
- 2. Systematically identify relevant theory and concepts, relate these to appropriate methodologies and evidence, apply correct techniques and draw suitable conclusions.

APPROVED BY

Institute PG Co-ordinator T.K.I.E.T., Warananagar

Chairman **Board of Studies**

Board of Studies CHEMICAL ENG 3. DEPT. Tatyasaheb Kore Institute of Edition.

Seal of Institute EERING

& Technology (Autonome) Warananagar, Dist. Kothagar

Academic Dean

Γ.K.I.E.T., Warananagar

Principal

T.K.I.E.T., Warananagar Chairman

cademic Council èt Kors I stitute of Engg ସମୁଧାର୍ଡ୍ଡ (Autonomous) anagar, Dist. Kolhapur