Chemistry Group (Sem-II)

COURSE WISE DETAILED CURRICULUM

24UG BSC-FY110 Engineering Chemistry

Lectures	: 3 Hrs/Week	Evaluation Scheme
Credit	: 3	ISE : 40 Marks
		ESE : 60 Marks

Course Objectives: The objective of the course is to1) Develop an interest among the students regarding applied and engineering chemistry.

- 2) Study the different water quality parameters and its applications in engineering field.
- 3) Apply the instrumental methods for analysis of different chemical substances.
- 4) Analyze characteristics of fuels and use proper material for engineering application.
- 5) Apply the appropriate method to prevent corrosion.
- 6) Understand basic concepts of phase.

Course Outcomes:COsAt the end of successful completion of the course, the student will beable toCO1Use relevant water treatment process to solve industrial problems.CO2Illustrate the analytical instrumental techniques for chemical analysis.CO3Select relevant engineering materials for applications.CO4Select proper fuels for domestic and industrial use.CO5Use corrosion preventive measures in domestic and industrial application.CO6Explain phase and chemical equilibrium.

Description:

This course aims to impart fundamental knowledge of instrumental methods, engineering materials (composite, polymer), phase rule and applied knowledge of water purification methods, fuel and prevention techniques of corrosion, this will help the students to select and use relevant materials and methods which will be economical and eco-friendly.

Prerequisites:	1:	Students should have knowledge about basic chemistry related to periodic table, chemical bonding, metals and nonmetals.
	2:	Basic concepts of reaction mechanism and state of matter.
	3:	Basic concepts of fuel and corrosion.

Section – I		
	Water	
Unit 1	Introduction, Impurities in natural water, Water quality parameters, Hardness of water, Types of hardness, Units of hardness. Ill effects of hard water in steam generation in boilers – Sludge & Scale formation. Numerical on hardness, treatment of hard water - ion exchange and reverse osmosis.	07 Hrs
	Instrumental methods of chemical analysis	
Unit 2	Introduction of instrumental methods, Spectrometry: Introduction, Laws of spectrometry – Lamberts law and Beer–Lambert's law, Single beam spectrophotometer – schematic, working and applications. Chromatography: Introduction, types, gas – Liquid Chromatography (GLC) – basic principle, instrumentation and applications. Advantages and disadvantages of instrumental methods.	06 Hrs
	Engineering materials	
Unit 3	Macromolecules: Polymers: Introduction, Polymerization reactions – Addition and condensation polymerization, Plastics – industrially important plastics Poly vinyl chloride, Phenol formaldehyde, Urea formaldehyde & Epoxy resin, Conducting polymers Composite materials Introduction, Composition, Properties and Uses of Fiber reinforced plastics (FRP) and Glass reinforced plastic(GRP)	07 Hrs
	Section – II	
	Fuels	
Unit 4	Introduction, Definition, Classification, Properties of fuels. Characteristics of good fuels, Comparison between solid, liquid and gaseous fuels, Calorific value (higher and lower), Bomb calorimeter and Boy's calorimeter. Numerical on Bomb and Boy's calorimeter Fuel Cells: Definition, Classification of fuel cells, Working of Solid oxide fuelcell (SOFC), Limitations and applications of fuel cells.	07 Hrs
	Corrosion and it's Prevention	
Unit 5	Introduction, Causes, Classification, Factors affecting rate of corrosion, Corrosion prevention methods – Proper design and material selection, Cathodic protection, Protective coatings – Metallic coatings such as Hot dipping – Galvanizing and Tinning, Electroplating, Metal Spraying.	07 Hrs

	Chemical Equilibrium	
	Introduction, Heterogeneous equilibrium, Mathematical statement of phase	
Unit 6	Rule, Terminology, Phase diagram, One component system example - Water	05 Hrs
	system. Two component system example - lead - silver, Applications and	
	Limitations of phase rule.	

Tex	t Books
1	Textbook of Engineering Chemistry by S.S. Dara and S.S.Umare, S. Chand and Company Lit.,
	New Delhi
2	Textbook of Engineering Chemistry by Shashi Chawla, Dhanpat Rai & Co.(Pvt.) Lit,Delhi
3	Textbook of Engineering Chemistry by Dr. Mrs. Jayshree Parikh, Tech-Max Publication Pune.
Ref	erence Books
1	Engineering Chemistry by Jain and Jain, Dhanpat Rai Publishing Company Ltd., New Delhi.
2	A Textbook of Engineering Chemistry by C. P. Murthy, C. V. Agarwal and A. Naidu, BS
	Publications, Hyderabad
3	Instrumental Methods of Chemical Analysis by Chatwaland Anand, Himalaya Publishing
	House, New Delhi
4	Engineering Chemistry by Renu Bapna and Renu Gupta, MacMillan Publishers (India) Ltd,
	Delhi.
5	Engineering Chemistry by Dr. A. K. Pahari and Dr. B. S. Chauhan, Laxmi Publications
	(P) Ltd, New Delhi.

Web Links/ Video Lectures

Sr.	Unit	Web Links/ Video Lectures
No	No.	Web Links/ Video Lectures
1	1	https://www.researchgate.net/publication/343294128_Water_Quality Parameters https://nptel.ac.in/courses/105104102
2	2	https://archive.nptel.ac.in/courses/102/107/102107028/
3	3	https://onlinelibrary.wiley.com/journal/2365709X https://nptel.ac.in/courses/113/105/113105057/
4	4	https://www.energy.gov/eere/fuelcells/types-fuel-cells http://www.nptelvideos.in/2012/11/engineering-chemistry-1.html
5	5	https://www.electrochem.org/corrosion-science/ https://nptel.ac.in/courses/113/108/113108051/
6	6	https://www.britannica.com/science/phase-rule https://nptel.ac.in/courses/113/104/113104068/ http://www.nitttrc.edu.in/nptel/courses/video/112104248/L17.html

24UG BSC-FY201 Engineering Mathematics-II

Lectures

: 3 Hrs/Week

Evaluation Scheme

ISE : 40 Marks ESE : 60 Marks

Course	Course Objectives: The objective of the course is to		
nur	 Model a real life scenario into differential equations and solve them analytically and numerically Learn different methods of solving improper and multiple integral 		
í í	Outcomes:		
COs	At the end of successful completion of the course, the student will be able to		
CO1	Solve ordinary differential equations of order one and degree one		
CO2	2 Apply numerical methods to solve ordinary differential equations of first order and first degree.		
CO3	Evaluate double and triple integrals.		
CO4	Use double integration to find area, mass of plane lamina.		
CO5	Evaluate definite integrals using Gamma and Beta functions		
CO6	Estimate definite integrals using numerical methods		

Description:			
Engineering Ma	Engineering Mathematics-II course is offered as the basic science course. This course contains		
Mathematical m	etho	ds and techniques that are typically used in engineering to solve complex	
engineering prob	lem	s. This course has six units namely i) Differential equation of first order first	
degree and Appl	icati	ons, ii)Numerical Solution of Differential Equation of order one degree One,	
iii)Integral Calcu	ılus,	iv) Numerical Integration, v) Multiple Integrations and vi) Application of	
Multiple Integral	S		
	1:	Trigonometric identities and Logarithmic identities	
Prerequisites:	2:	Differentiation and integration formulae	
3: Shapes of basic curves like circle, parabola, ellipse, straight line.		Shapes of basic curves like circle, parabola, ellipse, straight line.	
Section – I			
Dif	Differential equation of first order first degree and Applications		
Ex	Exact Differential Equation,		

Unit 1	Exact Differential Equation, Reducible to Exact Differential Equation, Linear Differential Equation, Reducible to Linear,	8 Hrs
	Application to orthogonal trajectory (Cartesian and Polar)	

	Numerical Solution of Differential Equation of order one degree On	e	
	Eulers Method		
Unit 2	Eulers modified Method	7 Hrs	
	Runge-Kutta Method of order four		
	Taylor Series Method		
	Multiple Integrations		
	Evaluation of double integral (Cartesian and Polar)		
Unit 3	Change of order of integration (Cartesian and polar)	0.11	
	Evaluation of triple integration	8 Hrs	
	Change of Cartesian to spherical coordinates		
	Section – II		
	Application of Multiple Integrals		
	Area using double integration		
Unit 4	Mass of plane lamina using double integration		
	Moment of inertia of plane lamina	6 Hrs	
	Volume using triple integration		
	Integral Calculus		
Unit 5	Gamma Function and properties		
Unit 5	Beta function and properties		
	Differentiation Under Integral Sign (with constant limits only)		
	Numerical Integration		
	Trapezoidal Rule		
Unit 6	Simpson's (1/3) rule		
	Simpson's (3/8) rule		
	Weddle's rule		

Note-Minimum 06 Assignments should be given covering all units

Tex	TextBooks		
1	Higher Engineering Mathematics, Dr. B. S. Grewal, S. Chand and Company, 40th Edition.		
Ref	erenceBooks		
1	Advanced Engineering Mathematics", H. K. Das, S. Chand Publication, 8th Edition.		
	A Text Book of Applied Mathematics", Vol. I and II, P. N.Wartikar and J. N. Wartikar, Vidyarthi GrihaPrakashan, Pune.		
3	A textbook of Engineering Mathematics, N. P. Bali, Iyengar, Laxmi Publications (P) Ltd, New Delhi		
4	Advanced Engineering Mathematics, ErwinKreyszig, Wiley India Pvt. Ltd		

Web Links/ Video Lectures

Sr. No	Unit No.	Web Links/ Video Lectures
-----------	----------	---------------------------

1	1	https://nptel.ac.in/courses/111/106/111106100/
2	2	https://nptel.ac.in/courses/111/107/111107063/
3	3,4,5	https://nptel.ac.in/courses/111/105/111105122/
4	6	https://youtu.be/_cgzqVmvqtQ

	24UG PCC-FY111 Co	mputer Programmin	g in C
Lectures	: 2 Hrs/Week	Evalu	ation Scheme
		ISE	: 40 Marks
		ESE	: 60 Marks
Course Objectiv	es: The objective of the course	is to	
1) <u>U</u> nderstand th	ne basics of problem solving tea	chniques	
2) Provide an in	sight into structured programm	ing constructs in C	
3) Give details of	f modular programming		
Course Outcome	25:		
COs At the en	nd of successful completion of	f the course	

COs	At the end of successful completion of the course
CO1	Define algorithm, flowchart and implementing programs in C-languages.
CO2	Select appropriate operators in programming expressions for implementing simple C-Programs.
CO3	Explain Decision Making and Branching statements for implementing Programs.
CO4	Illustrate appropriate looping statements for implementing Programs.
CO5	Develop C programming language for applications of 1-D and 2-D Arrays.
CO6	Make use of modular programming using functions in C-Language.

	Description:
This Course is designed to build programming skills in First year B.Tech students. The programming skills will be helpful to all branches of Engineering.	

Prerequisites: -		1: 2:	Basic knowledge of Computers. Computational Mathematics.	
Section – I				
	Basi	cs of	f C programming	
Unit 1	code,	flow le C	programming: Program development steps, Algorithms / Pseudo chart, History and Importance of C, Structure of C- Program, A programs, Keyword and Identifier, Basic data types and sizes, variables.	04 Hrs

	Operators and Expressions in C			
Unit 2	Introduction, Arithmetic Operators, Relation Operator, Logical Operator. Assignment Operators, Increment and Decrement Operators, Conditional Operator, Bitwise Operators, Special Operators, Arithmetic Expressions, Evaluation of Expressions, Precedence of Arithmetic Operators, Some Computational Problems.	04 Hrs		
	Decision Making and Branching Statements			
Unit 3	Decision Making and Branching : Introduction, Decision Making with IF Statement, Simple if Statement , if.else Statement, Nested ifelse Statements, elseif Ladder, Switch statement, The ?: Operator, The goto statement. Example programs	04 Hrs		
	Section – II			
	Decision Making and Looping			
Unit 4	Introduction, while statement, do-while statement, for statement:Simple for loop,Additional feature of for loop, Nesting of for loop, jumps in loops, break and continue. Example programs	04 Hrs		
	Arrays			
Unit 5	Introduction, Definitions of Array, Assigning and Entering value to an array, Accessing array elements/ Read data from an Array, Array Elements in Memory, 1-Dimensional, 2-Dimensional, Programs on Array operations, basic operations on matrices.	04 Hrs		
	User Defined Function			
Unit 6	Introduction, Need for User-defined functions, A multifunction progam/Moduler program, Prototype of Funtion/Function Declaration, Definition/Implementation of Functions, Return Values and their types, Function Calls,Category of function, Function Arguments:Call by Value. Example programs	04 Hrs		

Text Bo	ooks
1 Ct	he Complete Reference by Herbert Schild (Tata McGraw Hill) 4th Edition.
₂ The	e C Programming Language- Brian W. Kernighan, Dennis Ritchie 2nd Edition.
Referen	ce Books
$_{1}$ E.]	Balaguruswamy, "Programming in ANSI C", Tata McGraw Hill, 5th edition, 2010.
2 Let	Us C By Yashavant P. Kanetkar, 5th Edition.
	F • • • / • 7• • • • •

Web Links/ Video Lectures

Sr. No	Unit No.	Web Links/ Video Lectures
1.	01,02,03,04, 05 and 06	https://www.w3resource.co/ https://www.includehelp.com/c/ https://www.javatpoint.com/

24UG ESC-FY112 Engineering Mechanics Lectures : 2 Hrs/Week Evaluation Scheme Credit : 2 ISE : 40 Marks ESE : 60 Marks

Course Ob	ojectives: The objective of the course is to				
1) Unde	1) Understand and visualize the various force systems on static bodies.				
2) Stud	ly the concept of equilibrium and its imaginary existence.				
3) Eval	uate geometric properties of plain laminae.				
4) Und	erstand impact of rigid bodies.				
Course Ou	itcomes:				
COs	At the end of successful completion of the course, the student willbe able to				
CO1	Solve the resultant force and moment for a given system of forces.				
CO2	Determine the support reactions for a given system of forces.				
CO3	Calculate the support reactions for a given beams.				
CO4	Determine the centroid of the different cross sections in civil and mechanicalengineering.				
CO5	Determine the second moment of area of the different cross sections.				
CO6	Understand impact properties of material.				

Description:

This course is designed to provide basic understanding about the different types of forces, moments and their effects on structural elements, which will analyze different structural systems. Students should get enough knowledge about equilibrium condition, in which entire stability depends.

Prerequisites:			Learners should know secondary school mathematics Learners should know the "Mechanics" section from Physics.	
	Section – I			
Fundamentals of Statics				
Cint 1			cepts and Fundamental Laws, Force, System of Forces, Resultant, at, Resolution and Composition of Forces, Moment and Couple,	5

	Varignon's Theorem, Law of Moments.				
	Equilibrium of Forces				
Unit 2	Basic concept of equilibrium, Equilibrium conditions, Lamis' Theorem, Free Body Diagram, Equilibrium of spheres.	5			
	Equilibrium of Beams				
Unit 3	Types of Loads, Types of supports, Analysis of Simple beams, Support reactions.	4			
	Section – II				
	Centroid				
Unit 4	Centroid and Center of Gravity, Centroid of Standard shapes, centroid of given diagram	5			
	Moment of Inertia				
Unit 5	Moment of Inertia of Standard shapes from first principle, Parallel and perpendicular axis theorem, Moment of Inertia of plain and composite figures, Radius of Gyration.	5			
	Impact and Collision of elastic bodies				
Unit 6	Impact, Types of Impact, Law of conservation of Momentum, Coefficient of Restitution, Numerical on Direct central Impact and Impact on fixed plane.	4			

Te	Text Books			
1	Engineering Mechanics by R. S. Khurmi, S. Chand Publications.			
2	Engineering Mechanics by R. K. Bansal and Sanjay Bansal			
3	Engineering Mechanics by S. S. Bhavikatti, New Age International Pvt. Ltd			
4	Engineering Mechanics by D.P.Sharma, Pearson Education			
Ref	Reference Books			
1	Engineering Mechanics by Manoj K Harbola, Cengage Learning			
	Vector Mechanics for Engineers Vol.I and II by F. P. Beer and E. R. Johnston, Tata Mc -Graw			
2	Hill			
3	Engineering Mechanics by K. I. Kumar, Tata Mc -Graw Hill Publication			

4	Engineering Mechanics by Irving H. Shames, Prentice Hall of India, New Delhi.
-	Fundamentals of Engineering Mechanics by S. Rajasekaran, G. Sankarasubramanian, Vikas Publishing House.

Web Links/ Video Lectures

Sr. No	Unit No.	Web Links/ Video Lectures
1	1	https://www.youtube.com/watch?v=nGfVTNfNwnk
2	2	https://www.youtube.com/watch?v=nkg7VNW9UCc
3	3	https://www.youtube.com/watch?v=6u_rjLjv-MY
4	4	https://www.youtube.com/watch?v=Fudcc0JoXdo
5	5	https://www.youtube.com/watch?v=ljDIIMvx-eg
6	6	https://www.youtube.com/watch?v=aiT5mcuXf5Y

24UG ESC-FY113 BASIC MECHANICAL ENGINEERING

Lectures

: 2 Hrs/Week

Evaluation Scheme

ISE : 40 Marks ESE : 60 Marks

Course O	Course Objectives: The objective of the course is to		
1) Acc	1) Acquire basic knowledge of mechanical engineering		
2) Imp	part knowledge of basic concepts of thermodynamics applied to industrial application		
3) Un	derstand principle of energy conversion system and power plants		
4) Un	derstand and identify power transmission devices with their functions		
Course C	Dutcomes:		
COs	At the end of successful completion of the course, the student will be able to		
CO1	Describe the basic concepts of thermodynamics and solve SFEE problems.		
CO2	Demonstrate working of IC Engine.		
CO3	Explain working of VCRS and VARS		
CO4	Explain the principles, construction and working of various power plants.		
CO5	Summarize the working of energy converting and power transmission devices.		
CO6	Illustrate the basic manufacturing processes.		

Description:

Basic Mechanical Engineering course is offered as the basic science course. This course describes the scope of mechanical engineering in multidisciplinary industries and important phenomenon to run the world. This course describes the applications of Mechanical Engineering in many relative fields.

neius.	
D	1: Mathematics
Prerequisi	2: Basics of Thermodynamics
	3: Basics of energy sources
	Section – I
r ·	Thermodynamics
]	Thermodynamic State, Process, Cycle, Thermodynamic System, Heat, work, Internal Energy, First Law of Thermodynamics, Application of First Law to Steady Flow processes(Numerical Treatment), Limitations of First Law, PMM
	Introduction to I C Engine
	Classification of IC engines, Construction and Working of S.I. and C.I. engines Two strokes and Four Stroke engines. 04 Hrs
]	Introduction to Refrigeration and Air Conditioning
	Applications of Refrigeration & air conditioning Refrigerant types and Properties, Vapour compression system, vapour absorption system, Window04 HrsAir Conditioning. (Descriptive Treatment only).
	Section – II
]	Energy Sources and power plants
	Renewable and nonrenewable, Photovoltaic cell Wind Power plant, Hydropower plant, Steam Power plant, Bio-gas, Bio-Diesel (Descriptive 04 Hrs Freatment only).
1	Mechanical Power Transmission and Energy conversion devices
() () () () () () () () () () () () () (Type of Belt and belt drives (Descriptive Treatment only), chain drive, Types of gears and gear Trains, Construction, working and applications of centrifugal04 HrsPump
1	Manufacturing Processes
Unit 6	Introduction to manufacturing processes – Casting Process, Steps involved in casting processes, and their applications, Metal removing processes (Lathe, milling & drilling operations) Metal Joining Processes – Arc welding, soldering and brazing and their applications.

Tex	Text Books		
1	Thermal Engineering by R.K. Rajput, Laxmi Publication, Delhi, ISBN-13-978-8131808047, 9 th		
	edition.		
2	Engineering Thermodynamics by R.Joel, The English Language Book Society		
3	Elements of Heat Engine Vol.I,II,III by Patel and Karamchandani, Acharya Book Depot.		
Ref	ference Books		
1	Solar Energy by Dr.S.P. Sukathame, Tata Mc-Graw Hill Publication, 4th edition.		
2	Power Plant Engineering by Arora and Domkunwar, Dhanpat Rai and Sons		
3	Elements of Workshop Technology, Vol.I and II by Hajara Choudhari, Media Promoters		

Web Links/ Video Lectures

Sr. No	Unit No.	Web Links/ Video Lectures
1	1	https://nptel.ac.in/courses/112/105/112105123/
2	2	https://nptel.ac.in/courses/112/103/112103262/
3	3	https://nptel.ac.in/courses/112/107/112107208/
4	4	https://nptel.ac.in/courses/121/106/121106014/
5	5	https://nptel.ac.in/courses/112/105/112105234/
6	6	https://nptel.ac.in/courses/112/107/112107219/

	24UG HSSM-FY1	14IndianKnowledgeSystem(IKS)
Lectures	: 1Hrs/Week	EvaluationScheme
Credit	: 1	ISA : 30Marks
		Report : 20Marks

Course Objectives: The objective of the course is to		
To make students conscious about the Traditional knowledge and its importance		
• To inculcate the importance of protecting traditional knowledge and kind so taditional		
knowledge		
• To furnish information about the various sectors in traditional knowledge and protection of		
IKS		

- To kind them the Significance of historical places in the vicinity
- To make them aware of the importance and benefits and Yoga and Meditation

CourseOutcomes:		
Cos	At the end of successful completion of the course the students will be able to	
C01	Know the concept of Traditional knowledge and its importance.	
CO2	Use the traditional knowledge in different sectors and perform yoga and meditation for balanced life style.	
CO3	Understand the concept of intellectual property to protect the traditional knowledge.	
CO4	Know the need and importance of proctecting traditional knowledge.	

Description:

To facilitate the students with the concepts of Indian traditional knowledge and to make them understandthe Importance of roots of knowledge system. Indian Knowledge Systems (IKS) is an innovative cellunder Ministry of Education (MoE) at AICTE, New Delhi. It is established to promote interdisciplinaryresearchonallaspectsofIKS,preserveanddisseminateIKSforfurtherresearchandsocietalappli cations.Itwillactivelyengageforspreadingtherichheritageofourcountryandtraditionalknowledgeinthefieldof Artsandliterature,Agriculture,BasicSciences,Engineering&Technology,

Architecture, Management, Economics, etc

	IntroductiontoTraditionalKnowledge	
Unit 1	 DefineTraditionalKnowledge(TK), Natureandcharacteristics, 	03 Hrs
	 Scopeandimportance, Typesoftraditionalknowledge, TraditionalknowledgeVswesternknowledge 	

Unit 2	 TraditionalKnowledgeinDifferentSectors Traditionalknowledgeinagriculturalsector Needofmeditation and itsbenefits inbehavior pruning NeedandImportanceof Yogaineducationalsector 	03 Hrs
Unit 3	TraditionalKnowledgeandIntellectualProperty • Systemsoftraditionalknowledgeprotection, • Legalconceptsfortheprotectionoftraditionalknowledge, • HistoryanddevelopmentofWaranaindustrialandeducational complex	03 Hrs
	ProtectionofTraditionalKnowledge	
Unit 4	 Theneedforprotectingtraditionalknowledge SignificanceofTKProtection RoleofGovernmenttoharnessTK SignificanceandprotectionofhistoricalplacesinthevicinityofTKI ET,Warana 	03 Hrs

Note: Course evaluation include an In –Semester Assessment (ISA) 30 marks consisting (not limited to) Attendance, Quizzes, Declared tests, Surprise tests, Group Discussionand Assignmentsetc; and 20 marks for report writing in group/Individual.

Reco	RecommendedBooks: TextBooks:		
Tex			
1)	TraditionalKnowledgeSysteminIndia,byAmitJha,2009.		
2)	TraditionalKnowledgeSystemandTechnologyinIndiabyBasantaKumarMohantaandVipin KumarSingh, PratibhaPrakashan 2012		
Ref	References:		
1)	TraditionalKnowledgeSysteminIndiabyAmitJhaAtlanticpublishers,2002		
2)	"KnowledgeTraditionsandPracticesofIndia"KapilKapoor,MichelDanino		
E-r	E-resources:		
1)	https://www.youtube.com/watch?v=LZP1StpYEPM		
2)	http://nptel.ac.in/courses/121106003/		

24UG HSSM-FY202 Employability Enhancement Skills (Sem - II)

Credit

: 01

ISE : 50 Marks

ESE : NA

Course Objectives: The objective of the course is to

- To make students conscious about Recruitment procedure and ethics at workplace
- To inculcate the importance of Behavioral Skills in day to day communication
- To enhance the writing skills with technical report writing practice
- To prepare students to deliver speeches of various types / occasions

Course Outcomes:		
COs	At the end of successful completion of the course, the student will beable to	
CO1	Understand the procedure of recruitment drive	
CO2	Use interpersonal skills with precision and competence in different scenario	
CO3	Prepare technical reports for professional purposes	
CO4	Articulate prepared speeches to express ideas, thoughts and emotions	

Descriptio	on:			
Employmer	nt Enh	anc	ement Skills course has correlation with the Sem- I course Communication	on Skills.
After learnir	ng the	basio	cs of language in the first semester, this course concentrates on the person	nality
developmen	t, inter	pers	onal skills and expectation from an industry Hence the included models i	n the
syllabus has	the di	rect	co-relation with employability of the students. This course would definite	ely boost
personality a	and int	erpe	rsonal skills of the learners.	
Droroqui	citoc.	1:	Basic knowledge about English Vocabulary	
Prerequi	sites:	2: Communication in simple English		
	Recruitment and Career Skills			
 Importance of Planning and Managing Career Job Application and Resume/CV/Bio data Group Discussion Mock Personal Interview Corporate Etiquettes & Manners 		03 Hrs		
Unit 2	it 2 Behavioral Skills			

	 Understanding Self: Self Esteem Personality Types and Traits Time Management & Stress Management Positive Attitude Building Emotional Intelligence 	05 Hrs	
Unit 3	Technical Writing Skills • Importance and Objectives of Technical Writing • Structure and Types of Reports (Investigation and Accident Report) • Corporate Email Writing: Dos & Don'ts	04 Hrs	
	Developing Presentation Skills		
Unit 4	 Techniques of Public Speaking Speeches for Various Occasions: Welcome Speech, Introduction of a Guest, Vote of Thanks 	02 Hrs	

Reco	ommended Books:
1)	Communication Skills for Engineers by S. Mishra & C. Muralikrishna (Pearson)
2)	Communication Skills by Meenakshi Raman and Sangeeta Sharma, Oxford University Press 2016 1 st Edition
3)	Lesikar, R. V. and Pettit, J., D. Basic Business Communication, McGraw-Hill International Edition, Singapore 10 th Edition, 2006
4)	<i>Managing Soft Skills for Personality Development</i> by B.N. Ghosh, Tata McGraw Hill, 2012.
5)	Bikram K. Das, KalyaniSamantray, "An Introduction to Professional English and Soft Skills" Cambridge University Press New Delhi.
6)	Comfort, Jeremy, et al. (2011) Speaking Effectively: Developing Speaking Skills for Business English. Cambridge: Cambridge University Press. (Reprint)
7)	Sharma, R. C. and Krishna Mohan, Basic Correspondence and Report Writing: A Practical Approach to Business and Technical Communication, Tata McGraw-Hill Publishing Company Limited, India ,5th Edition, 2017
8)	Business Correspondence & Report-writing by R.C.Sharma&KrishnaMohan,Tata McGraw-Hill Education
9)	Dr. Abha Singh, "Behavioural Science" Wiley India Pvt.Ltd
10)	Soft Skills by K. Alex, S. Chand and Company, 2013
	www.buisnesscommunicationskills.com, www.kcitraing.com, www.mindtools.com

24UG BSC-FY 110LP- ENGINEERING CHEMISTRY Lab

Tutorial/Practical	: 2 hr/week	Evaluation Scheme
Credit	: 1	ISA : 25 Marks
		POE : NA

COs	At the end of successful completion of the course, the student will beable to
CO1	Use relevant water treatment process to solve industrial problems.
CO2	Illustrate the analytical instrumental techniques for chemical analysis.
CO3	Select relevant engineering materials for applications.
CO4	Select proper fuels for domestic and industrial use.
CO5	Use corrosion preventive measures in domestic and industrial application.
CO6	Explain phase and chemical equilibrium.

Description:

This course aims to impart fundamental knowledge of instrumental methods, engineering materials (composite, polymer), phase rule and applied knowledge of water purification methods, fuel and prevention techniques of corrosion, this will help the students to select and use relevant materials and methods which will be economical and eco-friendly.

1: Students should have knowledge about basic chemistry related		Students should have knowledge about basic chemistry related to periodic
Prerequisites:		table, chemical bonding, metals and nonmetals.
	2:	Basic concepts of reaction mechanism and state of matter.
	3:	Basic concepts of fuel and corrosion.

Number	Practical/ Experiment/Tutorial Topic	Hrs.
1	Determination of acidity of water	2
2	Determination of total alkalinity of water sample.	2
3	Determination of chloride content of water by Mohr's method.	2
4	Determination of temporary and permanent hardness of water sample by EDTA method.	2

5	Determination of moisture content in a given coal sample by proximate analysis	2
6	Determination of volatile content in a given coal sample by proximate analysis	2
7	Determination of ash content in a given coal sample by proximate analysis	2
8	Preparation of urea-formaldehyde resin	2
9	Preparation of phenol-formaldehyde resin	2
10	Determination of percentage of copper in brass by iodometry.	2
11	Estimation of zinc in brass solution	2
12	Determination of rate of corrosion of aluminium by weight loss method in acidic and basic medium	2
13	Determination of amount of copper present in unknown sample by colorimeter	2
14	Demonstration of paper chromatography	2

*Suggested list of practicals is given in the above table. Students need to perform minimum 10 practicals to fulfill the ISA evaluation.

	Text Books		
1	Textbook of Engineering Chemistry by S.S. Dara and S.S.Umare, S. Chand and Company Lit.,		
	New Delhi		
2	Textbook of Engineering Chemistry by Shashi Chawla, Dhanpat Rai & Co.(Pvt.) Lit, Delhi		
3	Textbook of Engineering Chemistry by Dr. Mrs. Jayshree Parikh, Tech-Max Publication Pune.		
Ref	erence Books		
1	Engineering Chemistry by Jain and Jain, Dhanpat Rai Publishing Company Ltd., New Delhi.		
2	A Textbook of Engineering Chemistry by C. P. Murthy, C. V. Agarwal and A. Naidu, BS		
	Publications, Hyderabad		
3	Instrumental Methods of Chemical Analysis by Chatwaland Anand, Himalaya Publishing		
	House, New Delhi		
4	Engineering Chemistry by Renu Bapna and Renu Gupta, MacMillan Publishers (India) Ltd,		
	Delhi.		
5	Engineering Chemistry by Dr. A. K. Pahari and Dr. B. S. Chauhan, Laxmi Publications		
	(P) Ltd, New Delhi.		

VLab Link:

- 1) Experiment name- Determination of Viscosity (Lab Name- Viscosity virtual lab) http://vlab.amrita.edu/?sub=2&brch=190&sim=339&cnt=1
- 2) Experiment name-Water Analysis-Physical Parameter (Lab Name-Inorganic Chemistry virtual lab) http://vlab.amrita.edu/?sub=2&brch=193&sim=575&cnt=1
- 3) Experiment name-Water Analysis-Chemical Parameter(Lab Name- Inorganic Chemistry virtual lab) http://vlab.amrita.edu/?sub=2&brch=193&sim=1548&cnt=1
- 4) Experiment name- Acid Base Titration (Lab Name- Inorganic Chemistry virtual lab) http://vlab.amrita.edu/?sub=2&brch=193&sim=352&cnt=1
- 5) Experiment name- Soil Analysis (Lab Name- Inorganic Chemistry virtual lab) http://vlab.amrita.edu/?sub=2&brch=193&sim=1549&cnt=1
- 6) Experiment name- Alloy Analysis (Brass) (Lab Name Inorganic Chemistry virtual lab) http://vlab.amrita.edu/?sub=2&brch=193&sim=1255&cnt=1
- 7) Experiment name Spectrophotometry (Physical Chemistry virtual lab) http://vlab.amrita.edu/?sub=2&brch=190&sim=338&cnt=1

24UG BSC-FY201LT -ENGINEERING MATHEMATICS - II TUTORIAL

Tutorial/Practical	:	1 hr/week	
Credit	:	1	

Evaluation Scheme			
ISA	:	25 Marks	
POE	:	NA	

Course Objectives: The objective of the course is to

. Model a real life scenario into differential equations and solve them analytically and numerically

. Learn different methods of solving improper and multiple integral.

Course Outcomes:

COs	At the end of successful completion of the course, the student will be able to		
CO1	Solve linear and nonlinear ordinary differential equations of order one and find orthogonal		
	trajectory.		
CO2	Find numerical solutions of ordinary differential equations of first order and		
	first degree.		
CO3	Compute double and triple integrals.		
CO4	Find area, mass of plane lamina using double integral.		
CO5	Evaluate definite integrals using Commo and Data functions		
05	Evaluate definite integrals using Gamma and Beta functions.		
CO6	Solve definite integral numerically.		

Description:

Engineering Mathematics-II course is offered as the basic science course. This course contains Mathematical methods and techniques that are typically used in engineering to solve complex engineering problems. This course has six units namely i) Differential equation of first order first degree

andApplications,ii)NumericalSolutionofDifferentialEquationoforderonedegreeOne,iii)Integral Calculus, iv) Numerical Integration, v) Multiple Integrations and vi) Application of Multiple Integrals

Prerequisites:	1:	I rigonometric identities and Logarithmic identities
Trerequisites.	2:	Differentiation and integration formulae
	3:	Shapes of basic curves like circle, parabola, ellipse, straight line.

Tutorials			
Number	Practical/Experiment/TutorialTopic	Hrs.	
1	Exact and reducible exact differential equation	2	
2	Linear, reducible to linear diff equation and Applications	2	
3	Evaluation of double and triple integration	2	
4	Change of order of integration	2	
5	Area by double integral, Mass of Lamina	2	
6	Gamma function and Differentiation under integral sign	2	
7	Beta functions and properties	2	
8	Euler and Eulers modified method	2	
9	Taylor series and Runge Kutta of order four	2	
10	Trapezoidal and Simpson (1/3) rule Simpsons (3/8)th andWeddles rule	2	

Tex	TextBooks				
1	Higher Engineering Mathematics, Dr. B. S. Grewal, S. Chand and Company, 40th Edition.				
Ref	ReferenceBooks				
1	Advanced Engineering Mathematics", H. K. Das, S. Chand Publication, 8th Edition.				
	A Text Book of Applied Mathematics", Vol. I and II, P. N. Wartikar and J. N. Wartikar, Vidyarthi GrihaPrakashan, Pune.				
3	A textbook of Engineering Mathematics, N. P. Bali, Iyengar, Laxmi Publications (P) Ltd, New Delhi				
4	Advanced Engineering Mathematics, ErwinKreyszig, Wiley India Pvt. Ltd				

24UG PCC-FY111LP Computer Programming in C Lab

Tutorial/Practical: 2 hr/weekCredit: 1

Evaluation Scheme ISA : 25 Marks

COs	At the end of successful completion of the course, the student will beable to
CO1	Define algorithm, flowchart and implementing programs in C language.
CO2	Select appropriate operators in programming expressions for implementing simple C programs.
CO3	Explain decision making and branching statements for implementing programs.
CO4	Illustrate appropriate looping statements for implementing programs.
CO5	Develop C programming language for applications of 1-D and 2-D arrays.
CO6	Make use of modular programming using functions in C language

Description:				
This Course is designed to build programming skills in First year B.Tech students. The programming skills will				
be helpful to all branches of Engineering. The student will learn basic programming concepts from declaring a variable, conditional statements, looping to the concepts of arrays.				
	1:	Basic knowledge of Computers.		
Prerequisites:				
i rerequisites.	2:	Computational Mathematics.		

Tutorials

Number	Practical/ Experiment/Tutorial Topic	Hrs.
1	Write a Program to Demonstrate how to read anddisplay the value in all	
	Basic data type variables.	2
	Example:	

	WAP to display the details of the Student Like:	
	1. Roll_No of Student	
	2. Division of Student	
	3. Height and Weight of Student.	
2	Write a C Program to demonstrate the working of Arithmetic	2
	operations using arithmetic operators in C.	
3	Write a C Program to do the following using relational operators and branching	
	statement:	
	a. Read two integers and check they are equalor not.	2
	b. Print the greatest of Two numbers.	
4	Write a Program to enter student marks through keyboard and find grade using the	
	conditional operator. grades are	
	1. Honor- 90 above 2. Distinction-80 to 89	
	3. Grade A+ - 70 to 79	2
	4. Grade A - 60 to 69	2
	5. Grade B - 50 to 59	
	6. Pass Grade - 40 to 49	
	7. Fail - Below 40	
5	Write a C Program to demonstrate Switch Statement and	
	Constant Variable by finding the area of Circle, Rectangle, Square and Triangle	2
	considers each as a different case.	
6	Write a C Program to demonstrate looping statements.	
	a. Find the Factorial by given a number.	
	b. Count total number of digits for a given integer number.	2
	c. Find the Sum of Digits in a given number.	2
	d. Reverse the given integer number and display the sameon the output screen.	
7	Write a C program to read N numbers in an integer array and	
	print it in reverse order.	2
8	Write a C program to read N numbers in an array and displaythe sum of array	
	elements.	2
9	Write a program to read two matrices and store the addition	
9	of two matrices in the third matrix.	2
10		
10	Write a C Program to swap two numbers using call by value.	2

Tex	Text Books			
1	C the Complete Reference by Herbert Schild (Tata McGraw Hill) 4th Edition.			
2	The C Programming Language- Brian W. Kernighan, Dennis Ritchie 2nd Edition.			
Reference Books				
1	E. Balaguruswamy, "Programming in ANSI C", Tata McGraw Hill, 5th edition,2010.			
2	Let Us C By Yashavant P. Kanetkar, 5th Edition.			

Web Links Practicals

1. http://cse02-iiith.vlabs.ac.in/

2. <u>https://codeforwin.org/category/c-programming</u>

3. https://www.w3resource.co/

24UG ESC-FY112LP - ENGINEERING MECHANICS Lab

Tutorial/Practical: 2 hr/weekCredit: 1

Evaluation SchemeISA:25 MarksPOE:NA

Course	Objectives: The objective of the course is to				
1) U	1) Understand the vector mechanics.				
2) V	visualize concept of equilibrium and its imaginary existence.				
3) A	pply equilibrium conditions for various cases.				
4) Fi	nd support reactions of beams				
Course	Outcomes:				
COs	At the end of successful completion of the course, the student will be able to				
CO1	Determine the resultant of concurrent coplanar force system graphically.				
CO2	Analyze the force the given force system.				
CO3	Verify the law of moment of given force system.				
CO4	Determine the support reactions of the given beam.				

Description: This course is designed to provide basic understanding about the different types of forces, moments and their effects on structural elements, which will analyze different structural systems. Students should get enough knowledge about equilibrium condition, in which entire stability depends.

Prerequisites:		Learners should know secondary school mathematics
Trerequisites.	2	Learners should know the "Mechanics" section from Physics.

Practical

Number	Practical/ Experiment/Tutorial Topic	Hrs.
1	Law of polygon of forces	2
2	Jib crane	2
3	Bell crank lever	2
4	Support Reactions of Beam	2
5	To find Resultant by Graphical Method	2
6	To find Support Reactions by Graphical Method	2
7	Assignment on finding Resultant	2
8	Assignment on Equilibrium of Sphere	2
9	Assignment on Finding support reactions of beam	2
10	Assignment on finding Centroid of given shape	2
11	Assignment on finding Moment of Inertia of given shape	2
12	Assignment on impact of elastic bodies	2

Te	Text Books			
1	Engineering Mechanics by R. S. Khurmi, S. Chand Publications.			
2	Engineering Mechanics by R. K. Bansal and Sanjay Bansal			
3	Engineering Mechanics by S. S. Bhavikatti, New Age International Pvt. Ltd			
4	Engineering Mechanics by D.P.Sharma, Pearson Education			
Re	ference Books			
1	Engineering Mechanics by Manoj K Harbola, Cengage Learning			
2	Vector Mechanics for Engineers Vol.I and II by F. P. Beer and E. R. Johnston, Tata Mc -Graw Hill			
3	Engineering Mechanics by K. I. Kumar, Tata Mc -Graw Hill Publication			
4	Engineering Mechanics by Irving H. Shames, Prentice Hall of India, New Delhi.			

24UG ESC-FY113LP - BASIC MECHANICAL ENGINEERING Lab

Tutorial/Practical: 2 hr/weekCredit: 1

Evaluation SchemeISA:25 MarksPOE:NA

COs	At the end of successful completion of the course, the student will be able to
CO1	Describe the working of IC engine
CO2	Classify Renewable and non-renewable energy sources
CO3	Explain different mechanisms for power transmission systems
CO4	Understand various basic operations of Lathe, Milling and Drilling machines

Description:		
As this subject has huge scope in various industries, so in labs the concept, construction, working and demonstration of various machines, equipment and devices is observed and understood with the help of various models.		
Duono qui di 4 que	1:	Theory knowledge of types and components of IC engine.
Prerequisites:	2:	Theory knowledge of types and components of refrigeration and air conditioning system.
	3:	Theory knowledge of types of energy sources

Number	Practical/ Experiment/Tutorial Topic	Hrs.
1	Solving SFEE numericals	4

2	Demonstration of I.C. engine	4
3	Demonstration of vapour compression refrigeration system and window air conditioner.	4
4	Demonstration of various power plants such as Windmill / Biogas / Hydroelectric Power Plant etc.	4
5	Demonstration of belt drive, chain drive, gear trains and centrifugal pump	4
6	Demonstration of casting, metal removal and metal joining processes	4

Tex	Text Books		
1	Thermal Engineering by R.K. Rajput, Laxmi Publication, Delhi,ISBN-13-978-8131808047, 9 th edition.		
2	Engineering Thermodynamics by R.Joel, The English Language Book Society		
3	Elements of Heat Engine Vol.I,II,III by Patel and Karamchandani, Acharya Book Depot.		
Ref	erence Books		
1	Solar Energy by Dr.S.P. Sukathame, Tata Mc-Graw Hill Publication, 4th edition.		
2	Power Plant Engineering by Arora and Domkunwar, Dhanpat Rai and Sons		
3	Elements of Workshop Technology, Vol.I and II by Hajara Choudhari, Media Promoters		

24UG HSSM-FY202LP Employability Enhancement Skills (Sem - II) – PRACTICAL

Tutorial/Practical : 02 hr/weekEvaluation SchemeCredit : 1ISA : 25 Marks

COsAt the end of successful completion of the course, the student will beable toCO1Understand the procedure of recruitment driveCO2Prepare technical reports for variety of purposesCO3Deliver prepared speeches to express ideas, thoughts and emotionsCO4Use interpersonal skills with precision and competence in different scenario.

Description:		
for communicating i	n the so	to differentiate between formal and informal communication and language, strategies workplace, using negotiation and diplomacy, and how to be a good promoter of using ft skills complementing to hard skills while getting to be recruited and applying
Dronoquigitage	1:	Basic knowledge about English Vocabulary
Prerequisites:	2:	Communication in simple English

	Practical	
Number	Practical/ Experiment/Tutorial Topic	Hrs
01	SWOC- Analysis	02
02	Group Discussion	04
03	Debate	02
04	Mock Interview	04

05	Speeches for Various Occasions	02
06	Email Writing	02
07	Practice on Technical Writing	04
08	Extempore or Pep talk	02

Rec	Recommended Books:		
1)	Communication Skills for Engineers by S. Mishra & C. Muralikrishna (Pearson)		
2)	Communication Skills by Meenakshi Raman and Sangeeta Sharma, Oxford University		
	Press 2016 1 st Edition		
3)	Lesikar, R. V. and Pettit, J., D. Basic Business Communication, McGraw-Hill International Edition, Singapore 10 th Edition, 2006		
4)	Managing Soft Skills for Personality Development by B.N. Ghosh, Tata McGraw Hill,		
	2012.		
5)	Bikram K. Das, KalyaniSamantray, "An Introduction to Professional English and Soft		
	Skills" Cambridge University Press New Delhi.		
6)	Comfort, Jeremy, et al. (2011) Speaking Effectively: Developing Speaking Skills for Business English. Cambridge: Cambridge University Press. (Reprint)		
7)	Sharma, R. C. and Krishna Mohan, Basic Correspondence and Report Writing: A Practical Approach to Business and Technical Communication, Tata McGraw-Hill Publishing Company Limited, India ,5th Edition, 2017		
8)	Business Correspondence & Report-writing by R.C.Sharma&KrishnaMohan,Tata McGraw-Hill Education		
9)	Dr. Abha Singh, "Behavioural Science" Wiley India Pvt.Ltd		
10)	Soft Skills by K. Alex, S. Chand and Company, 2013		
	www.buisnesscommunicationskills.com, www.kcitraing.com, www.mindtools.com		

24UG CC-FY115T Inquisitive learning

Teaching Scheme: Practical's: 2 hrs per week

Credits: 1

Evaluation Scheme:ISA:25 MarksPresentation:25 MarksTotal Marks:50 Marks

Cos	At the end of successful completion of the course the student will be able to
CO1	Identify real life problems through rigorous literature survey from societal need point of view.
CO2	Analyze the identified problems through technological perspective.
CO3	Proposed suitable solution to contribute society using fundamental knowledge of engineering through modern tools.
CO4	Use of technology to demonstrate proposed work in oral & written form.
CO5	Develop ability to work as an individual and as a team member and inculcate attitude of this for lifelong learning.

Group Structure:

Working in supervisor/mentor – monitored groups. The students Should plan, manage and complete a task/project/activity which addresses the stated problem.

- There should be team/group of 5 -6 students
- A supervisor/mentor teacher assigned to individual groups

Selection of Project/Problem:

The problem-based project oriented model for learning is recommended. The model begins with the identifying of a problem, often growing out of a question or "wondering". This formulated problem then stands as the starting point for learning. Students design and analyze the problem within an articulated interdisciplinary or subject frame. A problem can be theoretical, practical, social, technical, symbolic, cultural and/or scientific and grows out of students' wondering within different disciplines and professional environments. A chosen problem has to be exemplary. The problem may involve an interdisciplinary approach in both the analysis and solving phases .By exemplarity, a problem needs to refer back to a particular practical, scientific, social and/or technical Department of First Year B.Tech domain. The problem should stand as one specific example or manifestation of more general learning outcomes related to knowledge and/or modes of inquiry. There are no commonly shared criteria for what constitutes an acceptable project. Projects vary greatly in the depth of the questions explored, the clarity of the learning goals, the content and structure of the activity.

- A few hands-on activities that may or may not be multidisciplinary
- Use of technology in meaningful ways to help them investigate, collaborate, analyze, synthesize and present their learning.
- Activities may include-Solving real life problem, investigation /study and Writing reports of in depth study, field work.

Assessment:

The institution/head/mentor is committed to assessing and evaluating both student performance and program effectiveness. Progress of Inquisitive learning is monitored regularly on weekly basis. Weekly review of the work is necessary. During process of monitoring and continuous assessment AND evaluation the individual and team performance is to be measured. Inquisitive learning is monitored and continuous assessment is done by supervisor/mentor and authorities. Students must maintain an institutional culture of authentic collaboration, self-motivation, peer-learning and personal responsibility. The institution/department should support students in this regard through guidance/orientation programs and the provision of appropriate resources and services. Supervisor/mentor and Students must actively participate in assessment and evaluation processes.

- Group may demonstrate their knowledge and skills by developing a public product and/or report and/or presentation.
- Individual assessment for each student (Understanding individual capacity, role and involvement in the project)
- Group assessment (roles defined, distribution of work, intra-team communication and togetherness)
- Documentation and presentation

Evaluation and Continuous Assessment:

It is recommended that the all activities are to be record and regularly, regular assessment of work to be done and proper documents are to be maintained at college end by both students as well as mentor (you may call it Inquisitive learning work book).Continuous Assessment Sheet (CAS) is to be maintained by all mentors/department and institutes. Recommended parameters for assessment, evaluation and weightage:

- Idea Inception (10%)
- Outcomes of Inquisitive learning / Problem Solving Skills/ Solution provided/ Final product (Individual assessment and team assessment) (20%)
- Documentation (Gathering requirements, design & modeling, implementation/execution, use of technology and final report, other documents) (20%)
- Demonstration (Presentation, User Interface, Usability etc) (50%)

Inquisitive learning workbook will serve the purpose and facilitate the job of students, mentor and project coordinator. This workbook will reflect accountability, punctuality, technical writing ability and work flow of the work undertaken.

Recommended Guidelines and Phases:

It is learning through activity. Following are the recommended guidelines that will work as an initiator and facilitator in process of completion of Inquisitive learning.

1. Get groups of students registered preferably 4-6 students per group.

2. Assign mentor to each group.

3. Provide guidelines for title identification (Problem can be some real life situation that needs technology solutions. This situation can be identified by meeting people around, visiting various industries, society, and institutes. The solution can be prototype, model, convertible solutions, survey and analysis, simulation, and similar).

4. Let students submit the problem identified in prescribed format (Title, Problem statement, details of a problem undertaken, and what is need of solution to the problem)

5. Mentor can approve the problem statements based on feasibility and learning outcomes expected for first year engineering students

6. Mentor is to monitor progress of the task during phases of project work. Broadly phases may include- requirements gathering, preparing a solution, technology design for the solution. (Optional phases- implementation and testing)

7. Fortnightly monitoring and continuous assessment record is to be maintained by mentor.

8. Get the report submitted at the end of semester.

Evaluati	on and Assessment Sheet (To be filled in my mentor)		
Sr. No.	Details	Maximum Marks	Marks Obtained
1.	Problem Identification (Idea Inception)	05	
2.	Problem Analysis (Requirement Gathering)	05	
3.	Proposed Solution (Model/Design/ Process / prototype)	05	
4.	Report	10	
5.	Presentation	25	
Total Marks		50	
	Date:		
	Name & Sign of Mentor		