Chemistry Group (Sem-II)

COURSE WISE DETAILED CURRICULUM

23FY110 Engineering Chemistry

Lectures : 3 Hrs/Week **Evaluation Scheme**

Credit: 3 IA: 10 Marks

ISE : 30 Marks

ESE: 60 Marks

Course Objectives: The objective of the course is to

1) Study the different water quality parameters and its applications in engineering field.

- 2) Demonstrate the structural and functional role of biomolecules essential for cellular reactions.
- 3) Enlist the chemical and biological differences between DNA, RNA and their role in cellular behavior.
- 4) Develop an interest among the students regarding applied and engineering chemistry.
- 5) Analyze characteristics of fuels.
- 6) Understand basic properties of metals and alloys.

Course Outcomes:

COs	At the end of successful completion of the course, the student will beable to	Bloom's Taxonomy			
CO1	Use relevant water treatment process to solve industrial problems .	Apply			
CO2	Utilize the knowledge of biomolecule.	Apply			
CO3	Select relevant engineering materials for applications.	Remember			
CO4	Select proper fuels for domestic and industrial use.	Understand			
CO5	Use corrosion preventive measures in domestic and industrial application.	Apply			
CO6	Explain phase and chemical equilibrium.	Understand			

Description:

This course aims to impart fundamental knowledge of engineering materials (composite, polymer Cement), and applied knowledge of water purification methods, analysis of amino acids using ninhydrin test, energy storage devices, prevention techniques of corrosion. Students will be expected to communicate knowledge to society and industry.

	1:	Students should have knowledge about basic chemistry related to
Prerequisites:		electrochemistry and
		occurrence of metals,
	2:	periodic table physical and chemical properties of elements

3: Applications of fuel and different macromolecules				
Section – I				
	Water			
Unit 1	Introduction, impurities in natural water, water quality parameters Hardness of water, types of hardness, units of hardness. ill effects of hard water in steam generation in boilers, scale & sludge formation. Numericals on hardness, treatment of hard water (ion exchange and reverse osmosis). Green Chemistry: Definition, Twelve principles of green chemistry, Industrial			
	Chemistry of living cell			
Unit 2	 Cell & cellular constituents and their functions. Various classes of biological molecules & functions. a) Amino acids: Definition, Nomenclature, General structure and classification of amino acids: 1) Neutral amino acids: Hydrocarbon chain amino acids-Glycine, Alanine, Valine, Leucine, Isoleucine. 2) Acidic amino acids and their amides: Aspartic acid, Glutamic acid, Aspargine, Glutamine. 3) Basic aminoacids: Lysine Arginine, Histidine, b) Nucleic acids: Introduction, Meaning, Definition, Distinction between DNA and RNA, Components of nucleic acids viz, bases, 	05 Hrs		
	sugars. Nucleosides and nucleotides, Engineering materials			
Unit 3	Macromolecules: Polymers: Introduction, Addition and condensation polymers examples; plasticsindustrially important plastics(PF,UF & Epoxy resin) Conducting polymers and Biopolymers, Molecular Weight of polymers. Composite materials Introduction, Composition, properties and uses of fiber	07 Hrs		
	reinforced plastics (FRP) example glass reinforced plastic(GRP)			
	Section – II Fuels			
Unit 4	Introduction, Definition ,classification, properties of fuels. Characteristics of good fuels, comparison between solid, liquid and gaseous fuels, Calorific value (higher and lower), Bomb calorimeter and Boy's calorimeter. Numerical on Bomb and Boy's calorimeter Fuel Cells: Defination, classification of fuel cells, working of Solid oxide fuel cell (SOFC), limitations and applications of fuel cells.	07Hrs		
	Corrosion and it's Prevention			
Unit 5	Introduction, Concept of electrode potential, Nernst Theory, causes, classification, Factors affecting rate of corrosion corrosion monitoring and protection from corrosion prevention methods such as Proper design and material selection, cathodic protection, Prevention methods and protective coatings- Metallic and Non metallic	07Hrs		

	coatings, such as Hot dipping (galvanizing and tinning,), electroplating, Metal cladding, Metal Spraying				
	Chemical Equilibrium				
Unit 6	Introduction, Heterogeneous equilibrium, mathematical statement of phase rule Terminology, , Phase diagram, One component system example Water system. Two component system example lead-silver, applications and limitations of phase rule.				

Tex	Text Books				
1	Textbook of Engineering Chemistry by S.S. Dara and S.S.Umare, S. Chand and Company Lit., New Delhi				
2	Textbook of Engineering Chemistry by Shashi Chawla, Dhanpat Rai & Co.(Pvt.) Lit, Delhi				
3	Textbook of Engineering Chemistry by Dr. Mrs. Jayshree Parikh , Tech-Max Publication Pune.				
Ref	Reference Books				
1	Engineering Chemistry by Jain and Jain, DhanpatRai Publishing Company Ltd., New Delhi.				
	A Textbook of Engineering Chemistry by C. P. Murthy, C. V. Agarwal and A. Naidu, BS				
2	Publications,				
	Hyderabad				
3	ChatwalandAnand,InstrumentalMethodsofChemicalAnalysis,HimalayaPublishingHouse,New				
3	Delhi				
4	A text Book of Engineering Chemistry by ShashiChawla, DhanpatRai& Co. (Pvt.) Ltd, Delhi				
5	Engineering Chemistry by Renu Bapna and Renu Gupta, MacMillan Publishers (India) Ltd,				
5	Delhi.				

Web Links/ Video Lectures

Sr. No	Unit No.	Web Links/ Video Lectures
1	1	https://www.researchgate.net/publication/343294128 Water Quality Parameters https://nptel.ac.in/courses/122/106/122106028/ https://nptel.ac.in/courses/105/108/105108081/
2	2	https://www.britannica.com/science/biomolecule https://www.digimat.in/102.html
3	3	https://onlinelibrary.wiley.com/journal/2365709X https://nptel.ac.in/courses/113/105/113105057/
4	4	https://www.energy.gov/eere/fuelcells/types-fuel-cells http://www.nptelvideos.in/2012/11/engineering-chemistry-1.html
5	5	https://www.electrochem.org/corrosion-science/ https://nptel.ac.in/courses/113/108/113108051/
6	6	https://www.britannica.com/science/phase-rule https://nptel.ac.in/courses/113/104/113104068/ http://www.nitttrc.edu.in/nptel/courses/video/112104248/L17.html

23FY201 Engineering Mathematics-II

Lectures : 3 Hrs/Week **Evaluation Scheme**

Credit: 3 IA: 10 Marks

ISE : 30 Marks

ESE: 60 Marks

Course Objectives: The objective of the course is to

Reducible to Linear,

- 1) Model a real life scenario into differential equations and solve them analytically and numerically
- 2) Learn different methods of solving improper and multiple integral

Course Outcomes:

COs	At the end of successful completion of the course, the student will be	Bloom's
	able to	Taxonomy
CO1	Solve ordinary differential equations of order one and degree one	Understand
CO2	Apply numerical methods to solve ordinary differential equations of first	Apply
	order and first degree.	
CO3	Evaluate double and triple integrals.	Understand
CO4	Use double integration to find area, mass of plane lamina.	Apply
CO5	Evaluate definite integrals using Gamma and Beta functions	Apply
CO6	Estimate definite integrals using numerical methods	Apply

Description:

Engineering Mathematics-II course is offered as the basic science course. This course contains Mathematical methods and techniques that are typically used in engineering to solve complex engineering problems. This course has six units namely i) Differential equation of first order first degree and Applications, ii)Numerical Solution of Differential Equation of order one degree One, iii)Integral Calculus, iv) Numerical Integration, v) Multiple Integrations and vi) Application of Multiple Integrals

Multiple integrals				
		1:	Trigonometric identities and Logarithmic identities	
Prerequisi	ites:	2:	Differentiation and integration formulae	
		3:	Shapes of basic curves like circle, parabola, ellipse, straight line.	
	Section – I			
	Diffe	eren	ntial equation of first order first degree and Applications	
	Exa	ct D	Differential Equation,	
Unit 1	Red	lucił	ole to Exact Differential Equation,	8 Hrs
	Line	ear l	Differential Equation,	0 1115

	Application to orthogonal trajectory (Cartesian and Polar)					
	Numerical Solution of Differential Equation of order one degree One					
	Eulers Method					
Unit 2	Eulers modified Method	7 Hrs				
	Runge-Kutta Method of order four	/ 1115				
	Taylor Series Method					
	Multiple Integrations					
	Evaluation of double integral (Cartesian and Polar)					
Unit 3	Change of order of integration (Cartesian and polar)	8 Hrs				
	Evaluation of triple integration	опіѕ				
	Change of Cartesian to spherical coordinates					
	Section – II					
	Application of Multiple Integrals					
	Area using double integration					
Unit 4	Mass of plane lamina using double integration	6 Hrs				
	Moment of inertia of plane lamina	UIIIS				
	Volume using triple integration					
	Integral Calculus	,				
Unit 5	Gamma Function and properties					
	Beta function and properties	7 Hrs				
	Differentiation Under Integral Sign (with constant limits only)					
	Numerical Integration					
	Trapezoidal Rule					
Unit 6	Simpson's (1/3) rule	(II				
	Simpson's (3/8) rule	6 Hrs				
	Weddle's rule					

Note-Minimum 06 Assignments should be given covering all units

Tex	TextBooks				
1	Higher Engineering Mathematics, Dr. B. S. Grewal, S. Chand and Company, 40th Edition.				
Ref	ReferenceBooks				
1	Advanced Engineering Mathematics", H. K. Das, S. Chand Publication, 8th Edition.				
	A Text Book of Applied Mathematics", Vol. I and II, P. N. Wartikar and J. N. Wartikar, Vidyarthi Griha Prakashan, Pune.				
3	A textbook of Engineering Mathematics, N. P. Bali, Iyengar, Laxmi Publications (P) Ltd, New Delhi				
4	Advanced Engineering Mathematics, Erwin Kreyszig, Wiley India Pvt. Ltd				

Web Links/ Video Lectures

1	Sr. No Unit M
	1 1
2 245 10 // 11 1/05/11/105/100/	2 2
3 3,4,5 <u>https://nptel.ac.in/courses/111/105/111105122/</u>	3 3,4,5
4 6 https://youtu.be/_cgzqVmvqtQ	4 6

23FY111 Computer Programming in C

Lectures : 2 Hrs/Week Evaluation Scheme

Credit : 2 IA : 10 Marks

ISE : 30 Marks

ESE : 60 Marks

Course Objectives: The objective of the course is to

- Understand the basics of problem solving technique
- 2) Provide an insight into structured programming constructs in C
- 3) Give details of modular programming

Course Outcomes:

COs	At the end of successful completion of the course	Bloom's Taxonomy
CO1	Define algorithm, flowchart and implementing programs in Clanguages.	Remember
CO2	Select appropriate operators in programming expressions for implementing simple C- Programs.	Understand
CO3	Explain Decision Making and Branching statements for implementing Programs.	Understand
CO4	Illustrate appropriate looping statements for implementing Programs.	Understand
CO5	Develop C programming language for applications of 1-D and 2-D Arrays.	Apply
CO6	Make use of modular programming using functions in C-Language.	Apply

Description:

This Course is designed to build programming skills in First year B.Tech students. The programming skills will be helpful to all branches of Engineering.

Prerequisites:	1: Basic knowledge of Computers.
Trefequisites.	2: Computational Mathematics.

		The second secon	
	·	Section – I	
	Basics o	of C programming	
Unit 1	code, flov	E programming: Program development steps, Algorithms / Pseudo vchart, History and Importance of C, Structure of C- Program, A C programs, Keyword and Identifier, Basic data types and sizes, variables.	

	Operators and Expressions in C	
Unit 2	Introduction, Arithmetic Operators, Relation Operator, Logical Operator. Assignment Operators, Increment and Decrement Operators, Conditional Operator, Bitwise Operators, Special Operators, Arithmetic Expressions, Evaluation of Expressions, Precedence of Arithmetic Operators, Some Computational Problems.	04 Hrs
	Decision Making and Branching Statements	
Unit 3	Decision Making and Branching: Introduction, Decision Making with IF Statement, Simple if Statement, ifelse Statement, Nested ifelse Statements, elseif Ladder, Switch statement, The?: Operator, The goto statement. Example programs	04 Hrs
	Section – II	
	Decision Making and Looping	
Unit 4	Introduction, while statement, do-while statement, for statement:Simple for loop,Additional feature of for loop, Nesting of for loop, jumps in loops, break and continue. Example programs	04 Hrs
	Arrays	
Unit 5	Introduction, Definitions of Array, Assigning and Entering value to an array, Accessing array elements/ Read data from an Array, Array Elements in Memory, 1-Dimensional, 2-Dimensional, Programs on Array operations, basic operations on matrices.	04 Hrs
	User Defined Function	
Unit 6	Introduction, Need for User-defined functions, A multifunction progam/Moduler program, Prototype of Funtion/Function Declaration, Definition/Implementation of Functions, Return Values and their types, Function Calls, Category of function, Function Arguments: Call by Value. Example programs	04 Hrs

Tex	Text Books		
1	C the Complete Reference by Herbert Schild (Tata McGraw Hill) 4th Edition.		
2	The C Programming Language- Brian W. Kernighan, Dennis Ritchie 2nd Edition.		
Ref	Reference Books		
1	E. Balaguruswamy, "Programming in ANSI C", Tata McGraw Hill, 5th edition, 2010.		
2	Let Us C By Yashavant P. Kanetkar, 5th Edition.		

Web Links/ Video Lectures

Sr. No	Unit No.	Web Links/ Video Lectures
1.	01,02,03,04, 05 and 06	https://www.w3resource.co/ https://www.includehelp.com/c/ https://www.javatpoint.com/

23FY112 Engineering Mechanics

Lectures : 2 Hrs/Week Evaluation Scheme

Credit : 2 IA : 10 Marks

ISE: 30 Marks

ESE: 60 Marks

Course Objectives: The objective of the course is to

- 1) Understand and visualize the various force systems on static bodies.
- 2) Study the concept of equilibrium and its imaginary existence.
- 3) Evaluate geometric properties of plain laminae.
- 4) Understand impact of rigid bodies.

Course Outcomes:

COs	At the end of successful completion of the course, the student will be able to	Bloom's Taxonomy
CO1	Solve the resultant force and moment for a given system of forces.	Apply
CO2	Determine the support reactions for a given system of forces.	Apply
CO3	Calculate the support reactions for a given beams.	Apply
CO4	Determine the centroid of the different cross sections in civil and mechanicalengineering.	Apply
CO5	Determine the second moment of area of the different cross sections.	Apply
CO6	Understand impact properties of material.	Understand

Description:

This course is designed to provide basic understanding about the different types of forces, moments and their effects on structural elements, which will analyze different structural systems. Students should get enough knowledge about equilibrium condition, in which entire stability depends.

Prerequisites: 1 Learners should know secondary school mathematics 2 Learners should know the "Mechanics" section from Physics.				
	Section – I			
	Fundamentals of Statics			
Unit 1	Basic	Con	ncepts and Fundamental Laws, Force, System of Forces, Resultant,	5

Equilibrant, Resolution and Composition of Forces, Moment and Couple,

	Varignon's Theorem, Law of Moments.		
	Equilibrium of Forces		
Unit 2	Basic concept of equilibrium, Equilibrium conditions, Lamis' Theorem, Free Body Diagram, Equilibrium of spheres.	5	
	Equilibrium of Beams		
Unit 3	Types of Loads, Types of supports, Analysis of Simple beams, Support reactions.	4	
	Section – II		
	Centroid		
Unit 4	Centroid and Center of Gravity, Centroid of Standard shapes, centroid of given diagram	5	
	Moment of Inertia		
Unit 5	Moment of Inertia of Standard shapes from first principle, Parallel and perpendicular axis theorem, Moment of Inertia of plain and composite figures, Radius of Gyration.	5	
	Impact and Collision of elastic bodies		
Unit 6	Impact, Types of Impact, Law of conservation of Momentum, Coefficient of Restitution, Numerical on Direct central Impact and Impact on fixed plane.	4	

Tex	Text Books		
1	Engineering Mechanics by R. S. Khurmi, S. Chand Publications.		
2	Engineering Mechanics by R. K. Bansal and Sanjay Bansal		
3	Engineering Mechanics by S. S. Bhavikatti, New Age International Pvt. Ltd		
4	Engineering Mechanics by D.P.Sharma, Pearson Education		
Ref	ference Books		
1	Engineering Mechanics by Manoj K Harbola, Cengage Learning		
	Vector Mechanics for Engineers Vol.I and II by F. P. Beer and E. R. Johnston, Tata Mc -Graw		
2	Hill		
3	Engineering Mechanics by K. I. Kumar, Tata Mc -Graw Hill Publication		

4	Engineering Mechanics by Irving H. Shames, Prentice Hall of India, New Delhi.
_	Fundamentals of Engineering Mechanics by S. Rajasekaran, G. Sankarasubramanian, Vikas Publishing House.

Web Links/ Video Lectures

Sr. No	Unit No.	Web Links/ Video Lectures
1	1	https://www.youtube.com/watch?v=nGfVTNfNwnk
2	2	https://www.youtube.com/watch?v=nkg7VNW9UCc
3	3	https://www.youtube.com/watch?v=6u_rjLjv-MY
4	4	https://www.youtube.com/watch?v=Fudcc0JoXdo
5	5	https://www.youtube.com/watch?v=ljDIIMvx-eg
6	6	https://www.youtube.com/watch?v=aiT5mcuXf5Y

23FY113 BASIC MECHANICAL ENGINEERING

Lectures : 2 Hrs/Week **Evaluation Scheme**

Credit : 2 TA : 10 Marks

ISE: 30 Marks **ESE**: 60 Marks

Course Objectives: The objective of the course is to

1) Acquire basic knowledge of mechanical engineering

- 2) Impart knowledge of basic concepts of thermodynamics applied to industrial application
- 3) Understand principle of energy conversion system and power plants
- 4) Understand and identify power transmission devices with their functions

Course Outcomes:

COs	At the end of successful completion of the course, the student will be able to	Bloom's Taxonomy
CO1	Describe the basic concepts of thermodynamics and solve SFEE problems.	Understand
CO2	Demonstrate working of IC Engine.	Understand
CO3	Explain working of VCRS and VARS	Understand
CO4	Explain the principles, construction and working of various power plants.	Understand
CO5	Summarize the working of energy converting and power transmission devices.	Understand
CO6	Illustrate the basic manufacturing processes.	Remember

Description:

Basic Mechanical Engineering course is offered as the basic science course. This course describes the scope of mechanical engineering in multidisciplinary industries and important phenomenon to run the world. This course describes the applications of Mechanical Engineering in many relative fields

fields.					
Prerequisites:		1:	Mathematics		
		2:	Basics of Thermodynamics		
		3:	Basics of energy sources		
			Section – I		
	Theri	nody	ynamics		
Unit 1	Intern	al É	namic State, Process, Cycle, Thermodynamic System, Heat, work, nergy, First Law of Thermodynamics, Application of First Law to w processes(Numerical Treatment), Limitations of First Law, PMM	0 5 Hrs	
	Intro	duct	ion to I C Engine		
Unit 2			tion of IC engines, Construction and Working of S.I. and C.I. wo strokes and Four Stroke engines.	04 Hrs	
	Introduction to Refrigeration and Air Conditioning				
Unit 3	Prope	rties	ons of Refrigeration & air conditioning Refrigerant types and Vapour compression system, vapour absorption system, Window tioning. (Descriptive Treatment only).	04 Hrs	
			Section – II		
	Energ	gy So	ources and power plants		
Unit 4	Hydro	pow	e and nonrenewable, Photovoltaic cell Wind Power plant, ver plant, Steam Power plant , Bio-gas, Bio-Diesel (Descriptive only).	04 Hrs	
	Mech	anic	al Power Transmission and Energy conversion devices		
Unit 5		ars ar	elt and belt drives (Descriptive Treatment only), chain drive, Types nd gear Trains, Construction, working and applications of centrifugal	04 Hrs	
	Manu	ıfactı	uring Processes		
Unit 6	castin millin	g pr ig &	on to manufacturing processes – Casting Process, Steps involved in occesses, and their applications, Metal removing processes (Lathe, drilling operations) Metal Joining Processes – Arc welding, soldering and their applications.	0 5 Hrs	

Tex	Text Books				
1	Thermal Engineering by R.K. Rajput, Laxmi Publication, Delhi, ISBN-13-978-8131808047, 9 th				
	edition.				
2	Engineering Thermodynamics by R.Joel, The English Language Book Society				
3	Elements of Heat Engine Vol.I,II,III by Patel and Karamchandani, Acharya Book Depot.				
Ref	Reference Books				
1	Solar Energy by Dr.S.P. Sukathame, Tata Mc-Graw Hill Publication, 4th edition.				
2	Power Plant Engineering by Arora and Domkunwar, Dhanpat Rai and Sons				
3	Elements of Workshop Technology, Vol.I and II by Hajara Choudhari, Media Promoters				

Web Links/ Video Lectures

Sr. No	Unit No.	Web Links/ Video Lectures
1	1	https://nptel.ac.in/courses/112/105/112105123/
2	2	https://nptel.ac.in/courses/112/103/112103262/
3	3	https://nptel.ac.in/courses/112/107/112107208/
4	4	https://nptel.ac.in/courses/121/106/121106014/
5	5	https://nptel.ac.in/courses/112/105/112105234/
6	6	https://nptel.ac.in/courses/112/107/112107219/

23FY114 Indian Knowledge System (IKS)

Lectures : 1 Hrs/Week **Evaluation Scheme**

Credit: 1 IA: 10 Marks

ISE: 40 Marks

Course Objectives: The objective of the course is to

- To make students conscious about the Traditional knowledge and its importance
- To inculcate the importance of protecting traditional knowledge and kinds of traditional knowledge
- To furnish information about the various sectors in traditional knowledge and protection of IKS
- To kindle in them the Significance of historical places in the vicinity
- To make them aware of the importance and benefits and Yoga and Meditation

Course	Course Outcomes:					
Cos	At the end of successful completion of the course the students will be able to	Bloom's				
		Taxonomy				
CO1	Know the concept of Traditional knowledge and its importance.	Remember				
CO2	Use the traditional knowledge in different sectors and perform yoga and meditation for balanced life style.	Apply				
CO3	Understand the concept of intellectual property to protect the traditional knowledge.	Understand				
CO4	Know the need and importance of proctecting traditional knowledge.	Understand				

Description:

To facilitate the students with the concepts of Indian traditional knowledge and to make them understand the Importance of roots of knowledge system. Indian Knowledge Systems (IKS) is an innovative cell under Ministry of Education (MoE) at AICTE, New Delhi. It is established to promote interdisciplinary research on all aspects of IKS, preserve and disseminate IKS for further research and societal applications. It will actively engage for spreading the rich heritage of our country and traditional knowledge in the field of Arts and literature, Agriculture, Basic Sciences, Engineering & Technology, Architecture, Management, Economics, etc

	Introduction to Traditional Knowledge				
Unit 1	Define Traditional Knowledge (TK),Nature and characteristics,	03 Hrs			
	Scope and importance, Types of traditional knowledge,Traditional knowledge Vs western knowledge				

	Traditional Knowledge in Different Sectors			
Unit 2	 Traditional knowledge in agricultural sector Need of meditation and its benefits in behavior pruning Need and Importance of Yoga in educational sector 	03 Hrs		
	Traditional Knowledge and Intellectual Property			
Unit 3	 Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, History and development of Warana industrial and educational complex 	03 Hrs		
	Protection of Traditional Knowledge			
Unit 4	 The need for protecting traditional knowledge Significance of TK Protection Role of Government to harness TK Significance and protection of historical places in the vicinity of TKIET, Warana 	03 Hrs		

Rec	Recommended Books:		
	Text Books:		
1)	Traditional Knowledge System in India, by Amit Jha, 2009.		
2)	Traditional Knowledge System and Technology in India by Basanta Kumar Mohanta and Vipin Kumar Singh, Pratibha Prakashan 2012		
	References:		
1)	Traditional Knowledge System in India by Amit Jha Atlantic publishers, 2002		

2)	"Knowledge Traditions and Practices of India" Kapil Kapoor, Michel Danino
	E-resources:
1)	https://www.youtube.com/watch?v=LZP1StpYEPM
2)	http://nptel.ac.in/courses/121106003/

23FY115 Employability Enhancement Skills (Sem - II)

Lectures : 01 Hrs/Week **Evaluation Scheme**

IA: 10 Marks

Credit: 01 ISE: 40 Marks

ESE : NA

Course Objectives: The objective of the course is to

- To make students conscious about Recruitment procedure and ethics at workplace
- To inculcate the importance of Behavioral Skills in day to day communication
- To enhance the writing skills with technical report writing practice
- To prepare students to deliver speeches of various types / occasions

Course Outcomes:

COs	At the end of successful completion of the course, the student will beable to	Bloom's Taxonomy
CO1	Understand the procedure of recruitment drive	Understand
CO2	Use interpersonal skills with precision and competence in different scenario	Apply
CO3	Prepare technical reports for professional purposes	Apply
CO4	Articulate prepared speeches to express ideas, thoughts and emotions	Apply

Description:

Employment Enhancement Skills course has correlation with the Sem- I course Communication Skills. After learning the basics of language in the first semester, this course concentrates on the personality development, interpersonal skills and expectation from an industry Hence the included models in the syllabus has the direct co-relation with employability of the students. This course would definitely boost personality and interpersonal skills of the learners.

personanty and interpersonal skills of the learners.				
Prerequisites:		1:	Basic knowledge about English Vocabulary	
		2:	Communication in simple English	
	Reci	ruitı	ment and Career Skills	
Unit 1		Jo C	mportance of Planning and Managing Career ob Application and Resume/CV/Bio data Group Discussion Mock Personal Interview Corporate Etiquettes & Manners	03 Hrs

	Behavioral Skills		
	Understanding Self: Self Esteem		
Unit 2	Personality Types and Traits		
	Time Management & Stress Management	05 Hrs	
	Positive Attitude Building		
	Emotional Intelligence		
	Technical Writing Skills		
Unit 3	Importance and Objectives of Technical Writing		
	 Structure and Types of Reports (Investigation and Accident Report) 	04 Hrs	
	Corporate Email Writing: Dos & Don'ts		
	Developing Presentation Skills		
Unit 4	Techniques of Public Speaking		
	Speeches for Various Occasions:	02 Hrs	
	Welcome Speech, Introduction of a Guest, Vote of Thanks		

Rec	commended Books:
1)	Communication Skills for Engineers by S. Mishra & C. Muralikrishna (Pearson)
2)	Communication Skills by Meenakshi Raman and Sangeeta Sharma, Oxford University
	Press 2016 1 st Edition
3)	Lesikar, R. V. and Pettit, J., D. Basic Business Communication, McGraw-Hill International Edition, Singapore 10 th Edition, 2006
4)	Managing Soft Skills for Personality Development by B.N. Ghosh, Tata McGraw Hill,
	2012.
5)	Bikram K. Das, KalyaniSamantray, "An Introduction to Professional English and Soft
	Skills" Cambridge University Press New Delhi.
6)	Comfort, Jeremy, et al. (2011) Speaking Effectively: Developing Speaking Skills for Business English. Cambridge: Cambridge University Press. (Reprint)
7)	Sharma, R. C. and Krishna Mohan, Basic Correspondence and Report Writing: A Practical Approach to Business and Technical Communication, Tata McGraw-Hill Publishing Company Limited, India ,5th Edition, 2017
8)	Business Correspondence & Report-writing by R.C.Sharma&KrishnaMohan,Tata McGraw-Hill Education

9)	Dr. Abha Singh, "Behavioural Science" Wiley India Pvt.Ltd
10)	Soft Skills by K. Alex, S. Chand and Company, 2013
	www.buisnesscommunicationskills.com, www.kcitraing.com, www.mindtools.com

23FY110T- ENGINEERING CHEMISTRY Lab

Tutorial/Practical: 2 hr/weekEvaluation SchemeCredit: 1ISA: 25 Marks

POE : NA

Course Objectives: The objective of the course is to

- 1) Study the different water quality parameters and its determination.
- 2) Detect amino acids Ninhydrin, xanthoproteic, sodium nitro preside, Pauly's diazo test
- 3) Understand the structural and functional role of biomolecules essential for cellular reactions.
- 4) Study polymerization reactions and Preparation of urea-formaldehyde resin
- 5) Develop an interest among the students regarding applied and engineering chemistry.
- 6) Analyze characteristics of fuels and Determination of moisture, volatile and ash content in coal sample

Course Outcomes:				
COs	At the end of successful completion of the course, the student will be able to	Bloom's Taxonomy		
CO1	Use relevant water treatment process to solve industrial problems.	Apply		
CO2	Utilize the knowledge of biomolecule.	Apply		
CO3	Select relevant engineering materials for applications.	Remember		
CO4	Select proper fuels for domestic and industrial use.	Understand		
CO5	Use corrosion preventive measures in domestic and industrial application.	Apply		
CO6	Explain phase and chemical equilibrium.	Understand		

Description:

This course aims to impart analysis of water, fundamental knowledge of engineering materials (composite, polymer Cement), and applied knowledge of biomolecules, analysis of fuel, energy storage devices, prevention techniques of corrosion. Students will be expected to communicate knowledge to society and industry.

Prerequisites:		Students should have knowledge about water quality parameters, and occurrence of metals,
	2:	periodic table physical and chemical properties of elements
	3:	Applications of fuel ,different macromolecules and its importance.

Number	Practical/ Experiment/Tutorial Topic	Hrs.	Bloom's Taxonomy
1	Determination of acidity of water	2	Apply
2	Determination of total alkalinity of water sample.	2	Apply
3	Determination of chloride content of water by Mohr's method.	2	Apply
4	Determination of temporary and permanent hardness of water sample by EDTA method.	2	Apply
5	Determination of moisture, volatile and ash content in a given coal sample by proximate analysis	2	Understand
6	Preparation of urea-formaldehyde resin	2	Understand
7	Preparation of phenol-formaldehyde resin	2	Understand
8	Determination of percentage of copper in brass by iodometry.	2	Understand
9	Estimation of zinc in brass solution	2	Understand
10	Determination of rate of corrosion of aluminium by weight loss method in acidic and basic medium	2	Apply
11	Detection of amino acids – Ninhydrin, xanthoproteic, sodium nitro preside, Pauly's diazo test	2	Understand
12	Demonstration of paper chromatography	2	Understand

Tex	Text Books		
1	Textbook of Engineering Chemistry by S.S. Dara and S.S.Umare, S. Chand and Company Lit.,		
	New Delhi		
2	Textbook of Engineering Chemistry by Shashi Chawla, Dhanpat Rai & Co.(Pvt.) Lit, Delhi		
Ref	Reference Books		
1	Engineering Chemistry by Jain and Jain, DhanpatRai Publishing Company Ltd., New Delhi		
	A Textbook of Engineering Chemistry by C. P. Murthy, C. V. Agarwal and A. Naidu, BS		
2	Publications,		
	Hyderabad		

Lab Link:

- 1) Experiment name- Determination of Viscosity (Lab Name- Viscosity virtual lab) http://vlab.amrita.edu/?sub=2&brch=190&sim=339&cnt=1
- 2) Experiment name-Water Analysis-Physical Parameter (Lab Name-Inorganic Chemistry virtual lab) http://vlab.amrita.edu/?sub=2&brch=193&sim=575&cnt=1
- 3) Experiment name-Water Analysis-Chemical Parameter(Lab Name- Inorganic Chemistry virtual lab) http://vlab.amrita.edu/?sub=2&brch=193&sim=1548&cnt=1
- **4) Experiment name-** Acid Base Titration (**Lab Name-** Inorganic Chemistry virtual lab) http://vlab.amrita.edu/?sub=2&brch=193&sim=352&cnt=1
- **5) Experiment name-** Soil Analysis (**Lab Name-** Inorganic Chemistry virtual lab) http://vlab.amrita.edu/?sub=2&brch=193&sim=1549&cnt=1
- **6)** Experiment name- Alloy Analysis (Brass) (Lab Name Inorganic Chemistry virtual lab) http://vlab.amrita.edu/?sub=2&brch=193&sim=1255&cnt=1
- 7) **Experiment name** Spectrophotometry (Physical Chemistry virtual lab) http://vlab.amrita.edu/?sub=2&brch=190&sim=338&cnt=1

23FY201T-ENGINEERING MATHEMATICS – II TUTORIAL

Tutorial/Practical: 1 hr/week **Evaluation Scheme**

Credit: 1 ISA: 25 Marks

POE : NA

CourseObjectives: The objective of the course is to

- . Model a real life scenario into differential equations and solve them analytically and numerically
- . Learn different methods of solving improper and multiple integral.

Course Outcomes:

COs	At the end of successful completion of the course, the student will be able to	Bloom's Taxonomy
CO1	Solve linear and nonlinear ordinary differential equations of order one and find orthogonal trajectory.	Knowledge, Application
CO2	Find numerical solutions of ordinary differential equations of first order and first degree.	Knowledge
CO3	Compute double and triple integrals.	Knowledge
CO4	Find area, mass of plane lamina using double integral.	Application
CO5	Evaluate definite integrals using Gamma and Beta functions.	Evaluation
CO6	Solve definite integral numerically.	Knowledge

Description:

Engineering Mathematics-II course is offered as the basic science course. This course contains Mathematical methods and techniques that are typically used in engineering to solve complex engineering problems. This course has six units namely i) Differential equation of first order first degree

andApplications,ii)NumericalSolutionofDifferentialEquationoforderonedegreeOne,iii)Integral Calculus, iv) Numerical Integration, v) Multiple Integrations and vi) Application of Multiple Integrals

Prerequisites:	1:	Trigonometric identities and Logarithmic identities
Trerequisites.	2:	Differentiation and integration formulae
	3:	Shapes of basic curves like circle, parabola, ellipse, straight line.

Tutorials

			Bloom's
Number	Practical/Experiment/TutorialTopic	Hrs.	Taxonomy
1	Exact and reducible exact differential equation	2	Knowledge
2	Linear, reducible to linear diff equation and Applications	2	Knowledge, Application
3	Evaluation of double and triple integration	2	Knowledge
4	Change of order of integration	2	Knowledge
5	Area by double integral, Mass of Lamina	2	Knowledge, Application
6	Gamma function and Differentiation under integral sign	2	Knowledge
7	Beta functions and properties	2	Knowledge
8	Euler and Eulers modified method	2	Knowledge
9	Taylor series and Runge Kutta of order four	2	Knowledge
10	Trapezoidal and Simpson (1/3) rule Simpsons (3/8)th andWeddles rule	2	Knowledge

Tex	TextBooks		
1	Higher Engineering Mathematics, Dr. B. S. Grewal, S. Chand and Company, 40th Edition.		
Ref	GerenceBooks		
1	Advanced Engineering Mathematics", H. K. Das, S. Chand Publication, 8th Edition.		
2	A Text Book of Applied Mathematics", Vol. I and II, P. N. Wartikar and J. N. Wartikar, Vidyarthi GrihaPrakashan, Pune.		
	A textbook of Engineering Mathematics, N. P. Bali, Iyengar, Laxmi Publications (P) Ltd, New Delhi		
4	Advanced Engineering Mathematics, Erwin Kreyszig, Wiley India Pvt. Ltd		

23FY111T Computer Programming in C Lab

Tutorial/Practical: 2 hr/weekEvaluation SchemeCredit: 1ISA: 25 Marks

Course Objectives: The objective of the course is to

- 1) Understand the basics of problem solving techniques in programming perspective
- 2) Provide an insight into structured programming constructs in C
- 3) Give details of modular programming

Course Outcomes:

COs	At the end of successful completion of the course, the student will be able to	Bloom's Taxonomy
CO1	Define algorithm, flowchart and implementing programs in C language.	Remember
CO2	Select appropriate operators in programming expressions for implementing simple C programs.	Understand
CO3	Explain decision making and branching statements for implementing programs.	Understand
CO4	Illustrate appropriate looping statements for implementing programs.	Understand
CO5	Develop C programming language for applications of 1-D and 2-D arrays.	Apply
CO6	Make use of modular programming using functions in C language	Apply

Description:

This Course is designed to build programming skills in First year B.Tech students. The programming skills will be helpful to all branches of Engineering. The student will learn basic programming concepts from declaring a variable, conditional statements, looping to the concepts of arrays.

arracio, conditional statements, resping to the concepts of arrays.		
	1:	Basic knowledge of Computers.
Prerequisites:		
i rerequisites.	2:	Computational Mathematics.

Tutorials

Number	Practical/ Experiment/Tutorial Topic	Hrs.	Bloom's Taxonomy
1	Write a Program to Demonstrate how to read and display the value in all Basic data type variables. Example:	2	Remember

	WAP to display the details of the Student Like: 1. Roll_No of Student 2. Division of Student 3. Height and Weight of Student.		
2	Write a C Program to demonstrate the working of Arithmetic operations using arithmetic operators in C.	2	Remember
3	Write a C Program to do the following using relational operators and branching statement: a. Read two integers and check they are equal or not. b. Print the greatest of Two numbers.	2	Understand
4	Write a Program to enter student marks through keyboard and find grade using the conditional operator. grades are 1. Honor- 90 above 2. Distinction-80 to 89 3. Grade A+ - 70 to 79 4. Grade A - 60 to 69 5. Grade B - 50 to 59 6. Pass Grade - 40 to 49 7. Fail - Below 40	2	Understand
5	Write a C Program to demonstrate Switch Statement and Constant Variable by finding the area of Circle, Rectangle, Square and Triangle considers each as a different case.	2	Understand
6	 Write a C Program to demonstrate looping statements. a. Find the Factorial by given a number. b. Count total number of digits for a given integer number. c. Find the Sum of Digits in a given number. d. Reverse the given integer number and display the same on the output screen. 	2	Apply
7	Write a C program to read N numbers in an integer array and print it in reverse order.	2	Apply
8	Write a C program to read N numbers in an array and display the sum of array elements.	2	Apply
9	Write a program to read two matrices and store the addition of two matrices in the third matrix.	2	Apply
10	Write a C Program to swap two numbers using call by value.	2	Apply

Tex	Text Books				
1	C the Complete Reference by Herbert Schild (Tata McGraw Hill) 4th Edition.				
2	The C Programming Language- Brian W. Kernighan, Dennis Ritchie 2nd Edition.				
Ref	Reference Books				
1	E. Balaguruswamy, "Programming in ANSI C", Tata McGraw Hill, 5th edition,2010.				
2	Let Us C By Yashavant P. Kanetkar, 5th Edition.				

Web Links Practicals

- 1. http://cse02-iiith.vlabs.ac.in/
- 2. https://codeforwin.org/category/c-programming
- 3. https://www.w3resource.co/

23FY112T - ENGINEERING MECHANICS Lab

Tutorial/Practical: 2 hr/week Evaluation Scheme

Credit: 1 ISA: 25 Marks

POE : NA

Course Objectives: The objective of the course is to

- 1) Understand the vector mechanics.
- 2) Visualize concept of equilibrium and its imaginary existence.
- 3) Apply equilibrium conditions for various cases.
- 4) Find support reactions of beams

Course Outcomes:

COs	At the end of successful completion of the course, the student will be able to	Bloom's Taxonomy
CO1	Determine the resultant of concurrent coplanar force system graphically.	Evaluate
CO2	Analyze the force the given force system.	Analyze
CO3	Verify the law of moment of given force system.	Verify
CO4	Determine the support reactions of the given beam.	Application

Description:

This course is designed to provide basic understanding about the different types of forces, moments and their effects on structural elements, which will analyze different structural systems. Students should get enough knowledge about equilibrium condition, in which entire stability depends.

Prerequisites:	1	Learners should know secondary school mathematics
Trerequisites.	2	Learners should know the "Mechanics" section from Physics.

Practical

Number	Practical/ Experiment/Tutorial Topic	Hrs.	Bloom's Taxonomy
1	Law of polygon of forces	2	Evaluation
2	Jib crane	2	Analysis
3	Bell crank lever	2	Verification
4	Support Reactions of Beam	2	Application,
5	To find Resultant by Graphical Method	2	Knowledge
6	To find Support Reactions by Graphical Method	2	Knowledge
7	Assignment on finding Resultant	2	Evaluation
8	Assignment on Equilibrium of Sphere	2	Evaluation
9	Assignment on Finding support reactions of beam	2	Evaluation
10	Assignment on finding Centroid of given shape	2	Evaluation
11	Assignment on finding Moment of Inertia of given shape	2	Evaluation
12	Assignment on impact of elastic bodies	2	Evaluation

Tex	Text Books				
1	Engineering Mechanics by R. S. Khurmi, S. Chand Publications.				
2	Engineering Mechanics by R. K. Bansal and Sanjay Bansal				
3	Engineering Mechanics by S. S. Bhavikatti, New Age International Pvt. Ltd				
4	Engineering Mechanics by D.P.Sharma, Pearson Education				
Ref	Reference Books				
1	Engineering Mechanics by Manoj K Harbola, Cengage Learning				
	Vector Mechanics for Engineers Vol.I and II by F. P. Beer and E. R. Johnston, Tata Mc -Graw				
2	Hill				
3	Engineering Mechanics by K. I. Kumar, Tata Mc -Graw Hill Publication				
4	Engineering Mechanics by Irving H. Shames, Prentice Hall of India, New Delhi.				

Fundamentals of Engineering Mechanics by S. Rajasekaran, G. Sankarasubramanian, Vikas Publishing House.

23FY113T - BASIC MECHANICAL ENGINEERING Lab

Tutorial/Practical: 2 hr/weekEvaluation SchemeCredit: 1ISA: 25 Marks

POE : NA

Course Objectives: The objective of the course is to

1. Understand working of IC engine with the help of demo models.

- 2. Understand working of refrigeration and air conditioning system with equipment set-ups and models.
- 3. Understand the functions of power transmitting devices with the demo models.
- 4. Understand the working and operations of Lathe Milling and Drilling machines in machine shop.

Course Outcomes:					
COs	At the end of successful completion of the course, the student will be able to	Bloom's Taxonomy			
CO1	Describe the working of IC engine	Understand			
CO2	Classify Renewable and non-renewable energy sources	Understand			
CO3	Explain different mechanisms for power transmission systems	Understand			
CO4	Understand various basic operations of Lathe, Milling and Drilling machines	Understand			

Description:

As this subject has huge scope in various industries, so in labs the concept, construction, working and demonstration of various machines, equipment and devices is observed and understood with the help of various models.

1: Theory knowledge of types and components of IC engine.		Theory knowledge of types and components of IC engine.
Prerequisites:	2:	Theory knowledge of types and components of refrigeration and air conditioning system.
	3:	, , , , , , , , , , , , , , , , , , ,

Number	Practical/ Experiment/Tutorial Topic	Hrs.	Bloom's Taxonomy
1	Solving SFEE numericals	4	Understand
2	Demonstration of I.C. engine	4	Understand
3	Demonstration of vapour compression refrigeration system and window air conditioner.	4	Understand
4	Demonstration of various power plants such as Windmill / Biogas / Hydroelectric Power Plant etc.	4	Understand
5	Demonstration of belt drive, chain drive, gear trains and centrifugal pump	4	Understand
6	Demonstration of casting, metal removal and metal joining processes	4	Remember

Tex	tt Books
1	Thermal Engineering by R.K. Rajput, Laxmi Publication, Delhi,ISBN-13-978-8131808047, 9 th edition.
2	Engineering Thermodynamics by R.Joel, The English Language Book Society
3	Elements of Heat Engine Vol.I,II,III by Patel and Karamchandani, Acharya Book Depot.
Ref	erence Books
1	Solar Energy by Dr.S.P. Sukathame, Tata Mc-Graw Hill Publication, 4th edition.
2	Power Plant Engineering by Arora and Domkunwar, Dhanpat Rai and Sons
3	Elements of Workshop Technology, Vol.I and II by Hajara Choudhari, Media Promoters

23 FY 115T Employability Enhancement Skills (Sem - II) - PRACTICAL

Tutorial/Practical: 02 hr/weekEvaluation SchemeCredit: 1ISA: 25 Marks

Course Objectives: The objective of the course is to

- Strengthening Recruitment Skills- Group Discussion & Personal Interview
- Inculcate the Behavioral Skills in day to day communication and corporate environment
- Preparing students for writing technical reports and delivering speeches on different occasions

Course Outcomes:

COs	At the end of successful completion of the course, the student will be able to	Bloom's Taxonomy
CO1	Understand the procedure of recruitment drive	Understand
CO2	Prepare technical reports for variety of purposes	Evaluate
CO3	Deliver prepared speeches to express ideas, thoughts and emotions	Apply
CO4	Use interpersonal skills with precision and competence in different scenario.	Apply

Description:

This course is designed to differentiate between formal and informal communication and language, strategies for communicating in the workplace, using negotiation and diplomacy, and how to be a good promoter of using communication and soft skills complementing to hard skills while getting to be recruited and applying workplace etiquettes.

Prerequisites:	1:	Basic knowledge about English Vocabulary
Trerequisites.	2:	Communication in simple English

Practical

Number	Practical/ Experiment/Tutorial Topic	Hrs	Bloom's Taxonomy
01	SWOC- Analysis	02	Understand
02	Group Discussion	04	Understand & Analyze
03	Debate	02	Understand & Analyze
04	Mock Interview	04	Understand & Analyze
05	Speeches for Various Occasions	02	Apply
06	Email Writing	02	Analyze
07	Practice on Technical Writing	04	Analyze
08	Extempore or Pep talk	02	Apply

Rec	ommended Books:
1)	Communication Skills for Engineers by S. Mishra & C. Muralikrishna (Pearson)
2)	Communication Skills by Meenakshi Raman and Sangeeta Sharma, Oxford University Press 2016 1 st Edition
3)	Lesikar, R. V. and Pettit, J., D. Basic Business Communication, McGraw-Hill International Edition, Singapore 10 th Edition, 2006
4)	Managing Soft Skills for Personality Development by B.N. Ghosh, Tata McGraw Hill, 2012.
5)	Bikram K. Das, KalyaniSamantray, "An Introduction to Professional English and Soft Skills" Cambridge University Press New Delhi.
6)	Comfort, Jeremy, et al. (2011) Speaking Effectively: Developing Speaking Skills for Business English. Cambridge: Cambridge University Press. (Reprint)
7)	Sharma, R. C. and Krishna Mohan, Basic Correspondence and Report Writing: A Practical Approach to Business and Technical Communication, Tata McGraw-Hill Publishing Company Limited, India ,5th Edition, 2017

8)	Business Correspondence & Report-writing by R.C.Sharma&KrishnaMohan,Tata McGraw-Hill
	Education
9)	Dr. Abha Singh, "Behavioural Science" Wiley India Pvt.Ltd
10)	Soft Skills by K. Alex, S. Chand and Company, 2013
	www.buisnesscommunicationskills.com, www.kcitraing.com, www.mindtools.com

23FY116T Inquisitive learning

Teaching Scheme:

Practical's: 2 hrs per week

Credits: 1

Evaluation Scheme:

ISA: 25 Marks
Presentation: 25 Marks

Total Marks: 50 Marks

Course Objectives: The objective of the course is to

- 1. Inculcate independent learning by problem solving with social context.
- 2. Get opportunity to work in a group, so as to develop team skills and learn Professionalism.
- 3. Participate in research and development activities to provide sustainable solutions.

Course Outcomes:

Cos	At the end of successful completion of the course the student will be able to	Bloom's Taxonomy
CO1	Identify real life problems through rigorous literature survey from societal need point of view.	Understand
CO2	Analyze the identified problems through technological perspective.	Apply
CO3	Proposed suitable solution to contribute society using fundamental knowledge of engineering through modern tools.	Creating
CO4	Use of technology to demonstrate proposed work in oral & written form.	Evaluate
CO5	Develop ability to work as an individual and as a team member and inculcate attitude of this for lifelong learning.	Apply

Group Structure:

Working in supervisor/mentor – monitored groups. The students Should plan, manage and complete a task/project/activity which addresses the stated problem.

- There should be team/group of 5 -6 students
- A supervisor/mentor teacher assigned to individual groups

Selection of Project/Problem:

The problem-based project oriented model for learning is recommended. The model begins with the identifying of a problem, often growing out of a question or "wondering". This formulated problem then stands as the starting point for learning. Students design and analyze the problem within an articulated interdisciplinary or subject frame. A problem can be theoretical, practical, social, technical, symbolic, cultural and/or scientific and grows out of students' wondering within different disciplines and professional environments. A chosen problem has to be exemplary. The problem may involve an

interdisciplinary approach in both the analysis and solving phases .By exemplarity, a problem needs to refer back to a particular practical, scientific, social and/or technical Department of First Year B.Tech domain. The problem should stand as one specific example or manifestation of more general learning outcomes related to knowledge and/or modes of inquiry. There are no commonly shared criteria for what constitutes an acceptable project. Projects vary greatly in the depth of the questions explored, the clarity of the learning goals, the content and structure of the activity.

- A few hands-on activities that may or may not be multidisciplinary
- Use of technology in meaningful ways to help them investigate, collaborate, analyze, synthesize and present their learning.
- Activities may include-Solving real life problem, investigation /study and Writing reports of in depth study, field work.

Assessment:

The institution/head/mentor is committed to assessing and evaluating both student performance and program effectiveness. Progress of Inquisitive learning is monitored regularly on weekly basis. Weekly review of the work is necessary. During process of monitoring and continuous assessment AND evaluation the individual and team performance is to be measured. Inquisitive learning is monitored and continuous assessment is done by supervisor/mentor and authorities. Students must maintain an institutional culture of authentic collaboration, self-motivation, peer-learning and personal responsibility. The institution/department should support students in this regard through guidance/orientation programs and the provision of appropriate resources and services. Supervisor/mentor and Students must actively participate in assessment and evaluation processes.

- Group may demonstrate their knowledge and skills by developing a public product and/or report and/or presentation.
- Individual assessment for each student (Understanding individual capacity, role and involvement in the project)
- Group assessment (roles defined, distribution of work, intra-team communication and togetherness)
- Documentation and presentation

Evaluation and Continuous Assessment:

It is recommended that the all activities are to be record and regularly, regular assessment of work to be done and proper documents are to be maintained at college end by both students as well as mentor (you may call it Inquisitive learning work book). Continuous Assessment Sheet (CAS) is to be maintained by all mentors/department and institutes. Recommended parameters for assessment, evaluation and weightage:

- Idea Inception (10%)
- Outcomes of Inquisitive learning / Problem Solving Skills/ Solution provided/ Final product (Individual assessment and team assessment) (20%)
- Documentation (Gathering requirements, design & modeling, implementation/execution, use of technology and final report, other documents) (20%)
- Demonstration (Presentation, User Interface, Usability etc) (50%)

Inquisitive learning workbook will serve the purpose and facilitate the job of students, mentor and project coordinator. This workbook will reflect accountability, punctuality, technical writing ability and work flow of the work undertaken.

Recommended Guidelines and Phases:

It is learning through activity. Following are the recommended guidelines that will work as an initiator and facilitator in process of completion of Inquisitive learning.

- 1. Get groups of students registered preferably 4-6 students per group.
- 2. Assign mentor to each group.
- **3.** Provide guidelines for title identification (Problem can be some real life situation that needs technology solutions. This situation can be identified by meeting people around, visiting various industries, society, and institutes. The solution can be prototype, model, convertible solutions, survey and analysis, simulation, and similar).
- **4.** Let students submit the problem identified in prescribed format (Title, Problem statement, details of a problem undertaken, and what is need of solution to the problem)
- **5.** Mentor can approve the problem statements based on feasibility and learning outcomes expected for first year engineering students
- **6.** Mentor is to monitor progress of the task during phases of project work. Broadly phases may include- requirements gathering, preparing a solution, technology design for the solution. (Optional phases- implementation and testing)
- 7. Fortnightly monitoring and continuous assessment record is to be maintained by mentor.
- **8.** Get the report submitted at the end of semester.

Evaluati	on and Assessment Sheet (To be filled in my mentor)		
Sr. No.	Details	Maximum Marks	Marks Obtained
1.	Problem Identification (Idea Inception)	05	
2.	Problem Analysis (Requirement Gathering)	05	
3.	Proposed Solution (Model/Design/ Process / prototype)	05	
4.	Report	10	
5.	Presentation	25	
	Total Marks	50	
	Date:		

Name & Sign of Mentor

23FY202A Water Management

Course Objectives: The objective of the course is to

- 1) Develop understanding of water recourses.
- 2) Study global water cycle and factors that affect this cycle.
- 3) Analyze the process for water resources and management.
- 4) Study the research and development areas necessary for efficient utilization and management of water recourses.

Course Outcomes: Cos At the end of successful completion of the course the student will Bloom's be able to Taxonomy CO₁ **Describe** the global water cycle and its various process along with Understand climate change and its effect on water system. CO₂ **Explain** water recourse planning and management for sustainable Apply development. CO₃ **Illustrate** the development in use of water for agricultural application. Analyze CO₄ Understand **Identify** process for urban water supply to overcome the urban

Description:

challenges.

Water is a vital resource for all life on the planet. Only three percent of the water resources on Earth are fresh and two-thirds of the freshwater is locked up in ice caps and glaciers. One fifth of the remaining one percent is in remote, inaccessible areas. As time advances, water is becoming scarcer and having access to clean, safe, drinking water is limited among countries. Pure water supply and disinfected water treatment are prerequisites for the well-being of communities all over the world. One of the biggest concerns for our water-based resources in the future is the sustainability of the current and even future water resource allocation. This course will provide students a unique opportunity to study water management activities like planning, developing, distributing and optimum use of water resources. This course covers the topics that management of water treatment of drinking water, industrial water, sewage or

Wastewater, management of water resources, management of flood protection.

		1:	Nil	
Prerequis	sites:			
Unit1			ding 'water'-Climate change and the global water cycle, ding global hydrology	

Unit2	Water resources planning and management-Water law and the search for sustainability: a comparative analysis, Risk and uncertainty in water resources planning and management
Unit3	Agricultural water use-The role of research and development for agriculture water use Urban.
Unit4	Water supply and management-The urban water challenge, Water sensitive urban design

	R.QuentinGraft,KarenHussey,QuentinGraft,KarenHussey,Publisher,"WaterResources
1	PlanningandManagement", CambridgeUniversityPress, ISBN:9780511974304, 9780521762588.
2	P.C.Basil,"WaterManagement inIndia", ISBN:8180690970,2004.
3	C.A.Brebbia,"WaterResourcesManagement",ISBN:978-1-84564-960-9,978-1-84564-961-6.

A student must fulfill requirement of IA, ISE and ISA for appearing ESE.

* A separate examination will be conducted for the mentioned Audit Course at the end of the semester Inquisitive Learning: 25 marks for report preparation model making and 25 marks for presentation.

F.Y.B. Tech Chief Coordinator

Chairman

BOS F. Y. B. Techwarananagar

Autonomous

Academics

Academics

Chairman

matano

Academic Council