Tatyasaheb Kore Institute of Engineering & Technology, Warananagar (An Autonomous Institute)

S. Y. B. Tech (Electronics and Telecommunication) (Semester-IV)

END SEMESTER EXAMINATION, MONTH AUGUST-22

Course Name: Data Structure & algorithms

Course Code: ETC-405

Seat No:

Day and Date: Friday,12/08/2022 Time: 10.00 am to 12.00 pm

Max. Marks- 60

- i. All Questions are compulsory
- ii. Figure to the right indicates full marks.
- iii. Assume suitable data if missing.
- iv. Use of non-programmable calculators is allowed.
- v. Answer of MCO should be written in Answer book

v. Answer of MCQ should be written in Answer book						
Q. No.		Marks	CO	PO		
1	Attempt all Questions.	20	2	3		
	(Fill in the blank with correct answer and write full sentence.					
i	Array is collection of	2	2	3		
	a)similar Elements b)Dissimilar elements					
	c)Similar & dissimilar elements d)None					
ii	Record is collection of	2	2	3		
11	a)similar Elements b)Dissimilar elements	4	_	3		
	c)Similar & dissimilar elements d)None					
iii	What are types of data structures ?	2	2	3		
	a)Linear b)Non linear	_	_			
	c)Linear & Non Linear d)None					
iv	Which of the following is non linear data structure	2	2	3		
	a)Array b)Stack					
	c)Linked list d)Graphs &Trees Stack is related to	2	2	_		
v	a)FIFO b)LIFO	2	2	3		
	c)FIFO & LIFO d)None					
Vi	Which of the following is linear data structures?	2	2	3		
	a)Stack b)Trees	_	_			
	c)Binary trees d)Graphs					
Vii	Header node is used as sentinel in	2	2	3		
	a)Stack b)Queue					
¥7***	c)Graphs d)Binary trees			_		
Viii	The necessary condition to be checked before deletion from the Queueis	2	2	3		
	a)Overflow b)Under flow					
	c)Rear value d)Front value The minimum no of stack required to implement stack is	2	2	3		
iX	a)1 b)3	4	<u> </u>	3		
	c)2 $d)5$					
X	How many swaps are required to sort the given array using bubble sort.					
	{2,1,3,5,4}					
	a)4 b)5					
	c)6 d)7					

2	Attempt any Five from the following	10		
i	What is complexity of an algorithm ?	2	4	3
ii	What is Linear searching?	2	4	3
iii	What is Binary searching?	2	4	3
iv	What is Header Linked list	2	4	3
v	What is Two dimensional Arrays ?	2	4	3
vi	Define Data structure	2	4	3
		10		
3	Attempt any Two from the following	10		
a	What is data structure ?Explain data structure operations.	5	3	3
b	What is array ?How to represent array in memory	5	3	3
c	Write an algorithm for traversing Linear array.	5	3	3
4	Attempt any Two from the following	10		
a	What is Linked list? How to represent linked list in memory?	5	3	3
b	What is stack ?Explain Push & Pop Operations	5	3	3
c	Write an algorithm for traversing a Linked list	5	3	3
5	Attempt any Two from the following	10		
a	What is trees? How to represent trees in memory?	5	3	3
b	What is Graph ?Explain any three terminologies used in graphs.	5	3	3
С	Explain traversing methods used in trees	5	3	3

Question Paper Code :

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar (An Autonomous Institute)

F. Y. M. Tech (Electronics and Telecommunication Engg.) (Semester-II)

END SEMESTER EXAMINATION, August 2022

Course Name: Computer Vision Course Code: ETC-PCC-201

Seat No: 01

Day and Date: Wednesday, 03/08/2022

Time: 01:00 pm -03:00 pm Max. Marks- 60

- i. All Questions are compulsory
- ii. Figure to the right indicate full marks.
- iii. Assume suitable data if missing.
- iv. Use of non-programmable calculators is allowed.

Q. No.		Marks	CO
Q. No. 1	Solve Any One a) Explain Image Pyramids and its use. b) Explain Discrete Wavelet Transform in one Dimension	10	2,3
Q. No. 2	Solve Any One a) Explain Boundary Following Algorithm. b) How Polygonal Approximation is used to boundary?	10	2
Q. No. 3	Solve Any One a) Explain steps in pattern recognition. b) What are applications of pattern recognition?	10	2,3
Q. No. 4	Solve Any One a) Explain Matching by Correlation b) Explain Nearest Neighbor classifier	10	3
Q. No. 5	Solve Any One a) Explain applications of Image Mining b) Explain with block diagram Simple CBIR System.	10	2,3
Q. No. 6	Solve Any One a) Explain model of Neuron. b) Explain Perception and learning	10	1,3

Question Paper Code :

Tatyasaheb Kore Institute of Engineering & Technology Warananagar (An Autonomous Institute)

F. Y. M. Tech (Electronics and Telecommunication Engg.) (Semester-II)

END SEMESTER EXAMINATION, August 2022

Course Name: Computer Vision Course Code: ETC-PCC-201

Seat No: 02

Day and Date: Wednesday, 03/08/2022

Time: 01:00 pm -03:00 pm Max. Marks- 60

Instructions:

i. All Questions are compulsory

ii. Figure to the right indicate full marks.

iii. Assume suitable data if missing.

iv. Use of non-programmable calculators is allowed.

Q. No.		Marks	CO
Q. No. 1	Solve Any One a) Explain Multi resolution Image representation. b) Explain 2D Discrete Wavelet Transform and its applications in Image processing.	10	2,3
Q. No. 2	Solve Any One a) Explain Chain Codes with example b) Explain following terms: Signatures, Boundary segments, Skeletons.	10	2
Q. No. 3	Solve Any One a) Explain steps in pattern recognition. b) What are applications of pattern recognition?	10	2,3
Q. No. 4	Solve Any One a) Explain Matching by Correlation b) Explain String matching.	10	3
Q. No. 5	Solve Any One a) What are various features used for Image Retrieval? b) Explain with block diagram Simple CBIR System.	10	2,3
Q. No. 6	Solve Any One a) What are Different models of Artificial neural networks? b) Explain layered architecture of Artificial neural network.	10	1,3

Seat No.	
----------	--

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar (An Autonomous Institute, Affiliated to ShivajiUnitversity, Kolhapur)

F.Y.B.Tech.(All Branches) (Sem-II)

End Semester Examination, August-2022

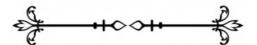
Basic Electrical and Electronics Engineering Course Code:FY105 FY105 Course Name: Day & Date : Monday, 8-Aug-2022 Max Marks: 60

Instructions: a) All questions are compulsory b) Figuresto the right indicates full marks c) Use of non-programmable calculator is allowed d) Assume suitable data if required. Bloom's Taxonomy and Course Outcom (K1-Remembering, K2-Understanding, K3-Applying, K4-Analyzing,	ne CO
K5-Evaluating, K6-Creating)	CO
Marks B.L	
Q.1 Attempt the following questions i) Correct form of ohm's law	
A) $I = VR$ B) $V \propto I$ 2 K3 C) $V = IR$ D) Options B and C	1
ii) Which property is used to oppose the flow of current? A) Potential difference B) Capacitance 2 K2 C) Inductance D) Resistance	1
 iii) A terminal where three or more branches meet is known as A) Terminus B) Combination C) Node D) None of these 	1
iv) A magnetic circuit wound with 1000 turns with MMF 1200 AT then what is current.? A) 2A B) 1.2A	2
C) 0.5A D) 4A v) Ohm's law for magnetic circuits is	
A) MMF= ϕ S B) MMF= ϕ /S 2 K4 C) MMF= ϕ^2 S D) MMF= ϕ /S ² vi) Unit of Reluctance?	2
A) AT/Wb B) Weber C) Wb/m ² D) Wb/AT	2
vii) Diode is acting as a A) Inductance B) Resistance 2 K2 C) Switch D) DC to DC	3
viii) Transitor has A) One PN junction B) Two PN junction C) Three PN junction D) Four PN junction	3

ix	The most widely used rectifier is				
	•	ıll wave rectifier	2	K4	3
	C) Bridge Rectifier D) No	one of these			
X	•				
	A) X_C/R B) X_L		2	K4	4
	C) R/Z D) Z/				
xi) If the power factor is 1/10 and the valuable calculate the resistance in the circuit	ue of impedance is 20 ohm,		K5	4
	A) 1 ohm B) 2 o	ohm	2	KS	7
	C) 3 ohm D) 4 o		-		
::					
xii	The peak (maximum) value of sine wave i A) 141.42V B) 70		2	K5	4
	,	one of above	2	KS	4
xiii		one of above			
		L= 3Vph	2	K4	5
	C) VL= $\sqrt{3}$ Vph D)nor	ne of these			
xiv	•				
	A) Interleaved primary and B) No secondary windings	o losses and magnetic leakage	2	K2	6
	C) A common core for its primary D) C and secondary windings win	Core of stainless steel and nding of pure copper metal			
XV	Function of Transformer is				
		ransfer Electrical Energy from circuit to other circuit with ging the frequency	2	K2	6
		one of these			
	one circuit to other circuit without				
	changing the frequency				
Q.2	Attempt any three		15		
a	State the principle of generating three phase	se voltage, how is 120° phase			
1	difference obtained in three voltages?		5	K2	5
b	Č	···/ m	5	K2	5
	i).Symmetrical system ii). Phase sequence i	•			
c		in a balanced delta Connected	_		_
.1	circuit	1-14	5	K4	5
d	 Compare star connected 3 phase load with d terms of phase voltage, phase current, powe 	-		K 1	5
	related to the configuration	- araning outer aurunuges			~
Q.3	Attempt any three		15		
a.a		n a transformer	5	K2	6
b					
	primary induced emf opposes the supply vo	ltage	5	K2	6

The net cross sectional area of the core is 60cm². The supply is 500V, 5 **K5** 50Hz. Find (i) The secondary induced voltage (ii) The maximum value of flux (iii) The maximum value of flux density in the core d) A single phase transformer is to step down the voltage from 2200V to 250V. If the area of the core is 36cm² and the maximum value of flux

density is 1.2 Wb/m² .Find


c) A single-phase transformer has 400 primary and 1000 Secondary turns.

5 **K5** 6

6

- i). The primary & secondary number of turns
- ii). The turns Ratio

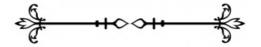
iii). The primary & secondary currents, if transformer power rating is

Seat No.	
----------	--

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar (An Autonomous Institute, Affiliated to ShivajiUnitversity, Kolhapur)

F.Y.B.Tech.(All Branches) (Sem-II)

End Semester Examination, August-2022


Basic Electrical and Electronics Engineering Course Code: Course Name: FY105 Monday, 8-Aug-2022 Day & Date : Max Marks : 60

Time 10:00 am to 12:00 noon

Instruc	tions: a) All questions an	re compulsory			
b) Figuresto the right		nt indicates full marks			
c) Use of non-programmable calculator is allowed					
	d) Assume suitable data if required. Bloom's Taxonomy and Course Outcome				
		ng, K2-Understanding, K3-Applying, K	K4-Analyzi	ng,	
	K5-Evaluating,	K6-Creating)	M. 1.	D.I	CO
			Marks	B.L	CO
Q.1	Attempt the following questions		30		
i)	Kirchhoff's current law states that	t			
	A) Net current flow at the junction				
	is positive	meeting at the junction is zero	2	K2	1
	C) No current can leave the junction	D) None of these			
ii)	without some current entering it Which of the following is not corre	2012			
11)	A) $P = V/R^2$	B) P = VI	2	К3	1
	C) $I = \sqrt{(P/R)}$	D) $V = \sqrt{(PR)}$	4	KJ	1
iii)	Specific resistance (Resistivity con				
111)	A) Ohm	B) Ohm/Meter	2	K2	1
	C) Mho	D) Ohm-Meter	4	11.2	1
iv)	Magnetic flux density unit?	D) Olim-Weter			
11)	A) weber/meter	B) weber/ meter ²	2	K2	2
	C) Tesla	D) Both B&C	4	182	4
v)	Relative permeability(µr) of air ga	,			
*)	A) 0.5	B) 0.25	2	K 1	2
	C) 1	D) 2	4	17.1	4
vi)	What happens to the MMF when	,			
V1)	A) Increases	B) Decreases	2	K2	2
	C) Remains constant	D) Becomes zero	_	112	_
vii)					
VII)	A) Current	B) Voltage	2	К3	3
	C) Power	D) Resistance	-	110	J
viii)	A reverse biased PN junction is ac	,			
v 111 <i>)</i>	A) Amplifier	B) Open switch	2	К3	3
	C) Closed switch	D) Rectifier	-	110	
	C) Closed Switch	D) Recuire			

ix)	The most widely used rectifier is				
	A) Half wave rectifier	B) Full wave rectifier	2	K4	3
	C) Bridge Rectifier	D) None of these			
x)	The peak (maximum) value of sine wave is 100V. Its R.M. S value				
	A) 141.42V	B) 70.71V	2	K 5	4
	C) 150 V	D) None of above			
xi)	A series circuit is connected acro	oss voltage of 70V, current of 1.7 A, if			
	power factor of circuit is 0.3, cal	culate Active power	2	K5	4
	A) 38.7 Watt	B) 30.24 watt			
	C) 35.7 Watt	D) 44.24 watt			
xii)	RMS value of Current for an AC				
	A) $I_{RMS} = I_{avg} / \sqrt{2}$	B) $I_{RMS} = I / \sqrt{2}$	2	K4	4
	C) $I_{RMS} = I_m / \sqrt{2}$	D) $I_{RMS} = I_{\sin \phi} / \sqrt{2}$			
xiii)	Power in a Three Phase AC Circ				
	A) $P = \sqrt{3} V_L I_L Cos\Phi$	B) $P = \sqrt{3} V_L I_L \sin \Phi$	2	K4	5
	C) $P = 3V_L I_L Cos\Phi$	D) None of these			
xiv)	Maximum value of flux establish	ned in a transformer on load is equal			
	to		2	K4	6
	A) E1/ (4.44*f*N1)	B) E2/ (4.44*f*N1)			
	C) E1/ (4.44*f*N2)	D) none of these			
xv)	Which type of flux does transfor				
	A) Constant magnetic flux	B) Increasing magnetic flux	2	K2	6
	C) Alternating magnetic flux	D) Alternating electric flux			
0.2	Attempt any three		15		
Q.2		ase power generation, transmission,	13		
a)	distribution & 3 phase machines	ase power generation, transmission,	5	K2	5
b)	<u>-</u>	hree phase voltage, how is 120 ⁰ phase	3	K2	3
U)	difference obtained in three voltage		5	K2	5
,			3	11.2	3
c)	Prove that Line Voltage = $\sqrt{3}$ Phase circuit.	se Voltage in a balanced star Connected	_	T7.4	_
.1\		-1	5	K4	5
d)	<u>-</u>	ead with delta connected 3 phase load in ent, power drawn, other advantages	_	T7.1	_
	related to the configuration	ent, power drawn, other advantages	5	K 1	5
Q.3	Attempt any three		15		
a)	- · ·	rinciple of single phase transformer	5	K2	6
b)		n for EMF equation of a transformer&	5	K4	6
-/	write Voltage and Turns ratio.	1	-	-	-
c)	· ·	00 primary and 1000 secondary turns.			
-/	O 1	core is 50 cm ² . If the primary winding	5	K5	6
	is connected to a 50 Hz supply at 4				
	· · · · · · · · · · · · · · · · · · ·	oltage (ii) The maximum value of flux			
	(iii) The maximum value of flux de				

- d) A single phase transformer is to step down the voltage from 2200V to 250V. If the area of the core is 36cm² and the maximum value of flux 5 K5 6 density is 1.2 Wb/m². Find
 - i). The primary & secondary number of turns
 - ii). The turns Ratio
 - iii). The primary & secondary currents if transformer power rating is 5KVA

Question	Paper	Code:
Zucsuon	raper	Coue.

Tatyasaheb Kore Institute of Engineering & Technology Warananagar (An Autonomous Institute)

S. Y. B. Tech (Electronics & Telecommunication Engineering) (Semester-IV)

END SEMESTER EXAMINATION, MONTH AUGUST 2021-22

Course Name: Linear Integrated Circuits Course Code: ETC403 (SET-II)

Day and Date: Friday, (08/08/2022)

Time: 2.00 Hrs Max. Marks- 60

Instructions:

i. All Questions are compulsory

- ii. Figure to the right indicates full marks.
- iii. Assume suitable data if missing.
- iv. Use of non-programmable calculators is allowed.

Q. No.		Marks	CO	PO
1	Attempt following all questions	20		
i.	What will be the emitter current in a differential amplifier, where both the transistor are biased and matched? (Assume current to be I_Q) a) $I_E = I_Q/2$ b) $I_E = I_Q$ c) $I_E = (I_Q)^2/2$ d) $I_E = (I_Q)^2$		CO1	PO1
ï.	How to improve CMRR value a) Increase common mode gain b) Decrease common mode gain c) Increase Differential mode gain d) Decrease differential mode gain		CO1	PO1
iii.	An ideal op-amp requires infinite bandwidth because a) Signals can be amplified without attenuation b) Output common-mode noise voltage is zero c) Output voltage occurs simultaneously with input voltage changes d) Output can drive infinite number of device		CO2	PO1
iv.	Ideal slew rate of op amp implies a) change in output after some time if input is changed b) change in input after some time if output is changed c) Simultaneous change in input and output d) None of above		CO2	PO2
v.	In inverting voltage comparator if Vin > Vref then output is a) Maximum b) Minimum c) +Vsat d) -Vsat		CO1	PO1
vi.	What is need of precision rectifier a) to rectify very small amplitude signal b) to rectify high amplitude signal c) to improve rectification efficiency d) all above		CO2	PO1
vii.	Circuit used to find maximum level of input signal is a)Window detector b) Peak detector c) Integrator d) rectifier		CO2	PO1
viii.	In an instrumentation amplifier, the output voltage is based on the _ a) summation of the two inputs b) product of the two inputs c) difference between the two inputs c) None of the above		CO2	PO2
ix.	The equation for the time period of square wave generator a) $T=2RC \ln \times [(R_1+R_2)/(R_2)]$. b) $T=2RC \ln \times [(2R_1+R_2)/(R_2)]$. c) $T=2RC \ln \times [(R_1+2R_2)/(R_2)]$. d) $T=2RC \ln \times [(R_1+R_2)/(2R_2)]$.		CO2	PO1

X.	Active filter consists of a)Active components b) passive components c) Active and Passive components d) None of the above		CO1	PO1
2	Attempt any Five from the following	10		
i.	Define CMRR. Mention various methods to improve CMRR.		CO1	PO1
ii.	What are advantages of negative feedback in op-amp application?		CO1	PO1
iii.	Draw op-amp high frequency equivalent circuit.		CO4	PO2
iv.	Give the classification of comparators.		CO2	PO1
V.	What are the equations for frequency of oscillation for RC phase shift and Wein bridge oscillator.		CO2	PO1
vi.	What is equation for frequency of oscillation for Astable multi vibrator using IC 555		CO2	PO2
3	Attempt any Two from the following	10		
a	With neat sketch explain current mirror circuit.		CO1	PO1
b	Derive equation for voltage gain for voltage shunt feedback amplifier.		CO2	PO2
c	Following specification are given for DIBO: $Rc = 2.2 \text{ K}\Omega \text{ , } RE = 4.7 \text{ K}\Omega \text{ , } Rin1 = Rin2 = 50 \Omega \text{ , } Vcc=10 \text{ V , } -VEE=-10 \text{ V , } \beta dc = \beta ac = 100 \text{ with Vbe}= 0.715 \text{ V}$ Determine: i) Operating voltage and current ii) Voltage gain iii) Input and output resistance		CO3	PO2
d	With neat sketch explain working of differential amplifier using one op-amp. Also explain the subtractor.		CO3	PO1
		10		
4	Attempt any Two from the following	10		
a	With neat sketch explain grounded load V to I converter		CO1	PO1
b	With neat sketch explain the working of precision full wave rectifier.		CO2	PO2
c	Derive the equation for slew rate.		CO3	PO1
d	With neat schematic diagram explain the working of triangular wave generator.		CO2	PO1
5	Attempt any Two from the following	10		
a	Draw and explain astable multi vibrator using IC 555. Draw necessary waveforms.		CO2	PO2
b	Design first order Butterworth high pass filter with pass band gain of 3 and cutoff frequency of 5 KHz.		CO1	PO1
c	With neat sketch explain sample and hold circuit. Draw necessary waveforms.		CO2	PO2
d	Draw first order Butterworth LPF. Derive equation for its cutoff frequency.		CO1	PO1

Question Paper Code:

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar

(An Autonomous Institute)

F. Y. M. Tech (ETC) (Semester-II) END SEMESTER EXAMINATION, August 2022

Course Name: Advanced Microwave Circuit Design Course Code: ETC-PE_20411

Day and Date: Wednesday, 10/08/2022

Seat No:

Time: 2.00 Hrs 1.0 to 3.00 Max. Marks- 60

- i. All Questions are compulsory
- ii. Figure to the right indicates full marks.
- iii. Assume suitable data if missing.
- iv. Use of non-programmable calculators is allowed.

Q. No.1	Attempt any one from the following	Marks	CO
a) b)	List out the advantages of micro-strip line over rectangular wave guide Explain how the calculation of load reflection coefficient is done using Schmitt Chart		2
Q. No.2	Attempt any one from the following		
a) b)	Explain step by step procedure of Smith chart in computing impedance of Passive circuit Explain the characteristics of Schmitt Chart	10	1
Q. No.3	Attempt any one from the following		
a) b)	What is RF filter? Describe basic steps in microwave RF filter design What are the parameters used to evaluate the performance of an amplifier?	10	2
Q. No.4	Attempt any one from the following		
a) b)	Explain procedure for design of microwave Low Noise Amplifier With design circuit for BJT explain working of biasing circuit for RF Amplifier	10	4
Q. No.5	Attempt any one from the following		
a) b)	Compare HMICs with MMICs Discuss the discrete integrated and monolithic microwave integrated circuit	10	5
Q. No.6	Attempt any one from the following		
a) b)	Explain basic oscillator model Explain manufacturing process on MMIC resistor and capacitor	10	4

Question Paper Code:

Tatyasaheb Kore Institute of Engineering & Technology Warananagar (An Autonomous Institute)

S. Y. B. Tech (Electronics and Telecommunication) (Semester-IV)

END SEMESTER EXAMINATION, AUGUST-2022

Course Name: Electronics Devices & Circuits-II Course Code: ETC-401

Seat No:

Day and Date: Wednesday, 3rd August, 2022.

Time: 10.00 to 12.00- 2.00 Hrs **Max. Marks- 60**

- i. All Questions are compulsory
- ii. Figure to the right indicates full marks.
- iii. Assume suitable data if missing.
- iv. Use of non-programmable calculators is allowed.
- v. Answer of MCQ should be written in Answer book

Q. No.		Marks	CO	PO
1	Attempt all Questions.	20	2	3
	(Fill in the blank with correct answer and write full sentence.			
i	RC coupling is used for amplification	2	2	3
	1. Voltage			
	2. Current			
	3. Power			
	4. None of the above			
ii	When a multistage amplifier is to amplify d. c. signal, then one must	2	2	3
	usecoupling			
	1. RC			
	2. Transformer			
	3. Direct			
	4. None of the above			
iii	When negative voltage feedback is applied to an amplifier, its	2	2	3
	voltage gain			
	1. Is increased			
	2. Is reduced			
	3. Remains the same			
	4. None of the above			
iv	The value of negative feedback fraction is always	2	2	3
	1. Less than 1			
	2. More than 1			
	3. Equal to 1			
	4. None of the above	_		
V	Class B power amplifier, the output current flows for	2	2	3
	1.less than half of input cycle			
	2.more than half input cycle			
	3.half input cycle			
	4.entire input cycle			2
vi	Power amplifier directly amplifies	2	2	3
	1 Voltage of signal			
	2 Current of the signal			
	3 Power of the signal			
	4 All of the mentioned			

vii	An oscillator converts	2	2	3
VII	1.ac. power into d.c. power	4	<i>_</i>	3
	2.dc. power into a.c. power			
	3.mechanical power into a.c. power			
	4.none of the above			
viii	Astable M.V is in both of the states.	2	2	3
	1.stable			
	2.unstable			
	3.free running			
	4.all are correct			
ix	IC 78XX provides	2	2	3
	1.positive voltage			
	2.negative voltage			
	3.both 4.none of the above			
X	Multivibrators are stage feedback amplifier.	2	2	3
А	1.two	4		3
	2.single			
	3.quad			
	4.a & b are correct			
2	Attempt any Five from the following	10		
i	What is the need of multistage amplifier?	2	4	3
ii	Define negative Feedback.	2	4	3
iii	Compare voltage amplifier and power amplifier. (Any two points)	2	4	3
iv	State the types of Oscillations.	2	4	3
v	What is the alternate name of Astable and Monostable Multivibrator.	2	4	3
vi	Draw pin diagram of 78XX and 79XX.	2	4	3
3	Attempt any Two from the following	10		
a	State the effect of negative feedback on different parameters of	5	3	3
u	amplifier.			
b	Explain in detail frequency response of RC coupled amplifier.	5	3	3
C	An amplifier has gain of 300. When negative feedback is applied, the	5	3	3
C	gain is reduced to 240. Find the value of feedback factor.	3	3	3
	gain is reduced to 240. Thid the value of reedback factor.			
4	Attempt any Two from the following	10		
a	Derive an expression for the second order harmonic distortion using	5	3	3
	three point methods.			
b	Write a short note on: Crystal Oscillator	5	3	3
c	What is cross over distortion? State its cause.	5	3	3
_				
5	Attempt any Two from the following	10		
5 a	Attempt any Two from the following Derive expression for frequency of Oscillation for Astable	10 5	3	3
			3	3
	Derive expression for frequency of Oscillation for Astable		3	3