

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar

An Autonomous Institute

Department of Computer Science & Engineering

Vision

To become center of excellence in the field of Computer Science and Engineering and develop competent IT technocrats

Mission

- To develop engineering graduates with high degree of processional excellence
- To excel in academics and research through contemporary and real world problems
- To enhance graduate employability through work based learning in social entrepreneurship
- To encourage industrial and nationally recognized institutes collaboration
- To create an environment to nurture lifelong learning

Program Educational Objectives (PEOs)

Graduates will be.

- Able to design and develop computing system using modern technologies by adapting business intelligence and challenges.
- Able to acquire capabilities with aptitude for higher education and entrepreneurship
- Able to function effectively as professionals having excellent interpersonal skills with ethical and social obligations.
- Able to work efficiently in multidisciplinary and multicultural environment
- Able to lead in their respective domain and contribute positively to the needs of society.

Program Specific Outcomes (PEOs)

Graduate will be able to

- Identify, design and develop solution for real world problems by implementing phases of software development process model
- Analyze and apply the computer science engineering solutions in societal and human context
- Demonstrate the skills and knowledge of contemporary issues in the field of Computer science and Engineering

Quality Policy

To promote excellence in academic and training activities by inspiring students for becoming competent professionals to cater industrial and social needs.

SWVSM'S

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar An Autonomous Institute

Abbreviations

S N	Acronym	Definition
1	ISE	In-Semester Examination
2	ESE	End-Semester Examination
3	ISA	In-Semester Assessment (Term Work)
4	L	Lecture
5	Т	Tutorial
6	P	Practical
7	СН	Contact Hours
8	С	Credits

Course Bucket Terminologies

Sr. No.	Acronym	Definition
1	PCC	Professional Core Course
2	MDM	Multidisciplinary Minor
3	OE	Open Elective Course
4	HSSM	Humanities Social Science and Management
5	ELC	Experiential Learning Course
6	VSEC	Vocational and Skill Enhancement Course
7	AEC	Ability Enhancement Course

Course/ Subject Code

F.Y.B.Tech Syllabus change year	UG/PG	Course Category with number	Separator	Branch	Semester	Cou Num	
23	UG	PCC	-	CSE	3	0	1

Course Term work and POE Code

CSE	3	0	1	T/P/A
Branch	Semester	Course	Number	T - Term work P - POE A - Audit Course

Second Year B.Tech

(Semester-III) in

Computer Science and Engineering

Syllabus Structure and Curriculum as per NEP 2020

SWVSM's

Tatyasaheb Kore Institute of Engineering and Technology (Autonomous), Warananagar

Second Year B. Tech. (Computer Science and Engineering)

Semester-III

(To be implemented from 2024 - 25) Credit Scheme as per NEP

Sr.		Sub-	Course		T	each	ing	Sche	me	Examinati S	on & Ev Scheme	aluati	ion
No	Category	Category	Code	Course Title	L	Т	P	C	СН	Component	Marks	Mi Mark Pass	s for
1		PCC	23UG-PCC-	Mathematics for Computer	3			2	3	ISE	40	16	40
1		100	CSE301	Science Science						ESE	60	24	40
2		PCC	23UG-PCC-	Digital System &	2			2	2	ISE	40	16	40
_		100	CSE302	Microprocessor						ESE	60	24	
3	Program Core	PCC	23UG-PCC-	Data Structures	3			2	3	ISE	40	16	40
	Course	100	CSE303	<u>Data Structures</u>						ESE	60	24	10
4		PCC	23UG-PCC-	<u>Software</u>	2			2	2	ISE	40	16	40
7		100	CSE304	Engineering					2	ESE	60	24	40
5		PCC	23UG-PCC-	<u>Discrete</u> Mathematical	2			2	2	ISE	40	16	40
3		TCC	CSE305	<u>Structures</u>			2		ESE	60	24	40	
6	Multi- Disciplinary Course	MDM-1	23UG- MDM1- CSE306	Statistical Computing	2			2	2	ISA (TW)	50	20	20
7	Humanities Social	Entrepreneurshi p/Economics/ Mgmt. Course	23UG- EEC1- CSE307-1	Entrepreneurship Management	2			2	2	ISA (TW)	25	10	10
0	Science and	Value	23UG-	Object Oriented	2.44.4		_	,		ISA (TW)	25	10	20
8	Management	Education Course	VEC1- CSE308-1	Programming using C++	2**		2	1	4	ESE (POE)	50	20	30
9	Experiential Learning Courses	Community Engg Project (CEP/FP)	23UG-CEP- CSE309	Field Project	1		2	2	3	ISA (TW)	25	10	10
10		PCC	23UG-PCC-	Data Structures			4	2	4	ISA (TW)	25	10	20
10		PCC	CSE303P	<u>Lab</u>			4	2	4	ESE (POE)	25	10	20
11	Program Core	PCC	23UG-PCC-	Digital Systems &			2	1	2	ISA (TW)	25	10	20
11	Courses	PCC	CSE302P	Microprocessors Lab				1	2	ESE (OE)	25	10	20
12		PCC	23UG-PCC- CSE305T	Discrete Mathematical Structures		1		1	1	ISA (TW)	25	10	10
					19	1	10	21	30		800	320	320

Note: (1) **Additional contact hours are provided for the courses without any credit (2) In theory examination there will be separate passing for ESE and ISE

Humanities Social Science and Management (HSSM) Course Basket Sem -III **Entrepreneurship / Economics Course (EEC-1)** Sub **Category Course Code Name of Course** Category Entrepreneurship 23UG-EEC1-CSE307-1 Management Humanities Computer Science and Social Science **EEC - 1** 23UG-EEC1-CSE307-2 **Economics** and Management 23UG-EEC1-CSE307-3 IT Project Management **Value Education Course (VEC-1)** Sub Category **Course Code Name of Course** Category **Object Oriented** 23UG-VEC1-CSE308-1 Programming using C++ Humanities Social Science VEC-1 Problem Solving using C 23UG-VEC1-CSE308-2 and Management 23UG-VEC1-CSE308-3 Embedded C

23UG-PCC-CSE301- Mathematics for Computer Science

Click for Syllabus Structure

Teaching Scheme
Lectures: 3 Hrs/Week
Credits: 2

Evaluation Scheme
ISE: 40 Marks
ESE: 60 Marks

Cours	se Objective :	
1	To develop mathematical skills and enhance analytical power of students.	
2	To prepare students to analyze data using statistical methods & interpret the real world.	he solution in
3	To give the knowledge to the students of fuzzy set theory and Numerical	methods.
Cours	se Outcomes :	
COs	At the end of successful completion of the course, the students will	Bloom's
COS	be able to	Taxonomy
CO1	Describe statistical data using statistical concepts, regression lines and curve fitting techniques.	Understand
CO2	Use Binomial, Poisson and Normal distributions to find probabilities.	Apply
CO3	Test hypotheses, examine data and make statistically significant inferences from the results.	Evaluate
CO4	Understand the basic ideas of fuzzy sets, operations and properties of fuzzy sets	Understand
CO5	Solve algebraic and transcendental equations using numerical methods.	Apply

Course Description:

This course provides a comprehensive introduction to the fundamental concepts and techniques in statistics. It covers essential topics such as measures of central tendency, measures of dispersion, correlation and regression analysis, probability distributions, statistical inference, fuzzy sets, and numerical methods. The course is designed to equip students with the necessary statistical tools to analyze and interpret data effectively.

		1	Basic Algebra, Basic Arithmetic, Number series				
Prerequ	isites :	2	Probability fundamentals				
3 Se		3	Set theory				
			Section – I				
	Introd	ucti	ion to Statistics				
	Revisio	n	of basic definitions/concepts, Measures of central tendency:				
Unit_1	Arithm	etic	Mean (A.M.), Median, Mode, Combined Mean, Measures of	08			
Unit-1	Dispers	sion	:Range, Quartile deviation, Mean deviation Standard deviation as	uo Hours			
	Absolu	te 1	measures of dispersion, Coefficient of range, quartile deviation,	Hours			
	mean d	evia	ation, Coefficient of variation as Relative measures of dispersion				
Unit-2	Correl	atio	on, Regression & Curve Fitting				

	Introduction, Karl Pearson's Coefficient of Correlation, Lines of regression	08			
	of bivariate data, Fitting of Curves by method of Least-squares: Fitting of	Hours			
	Straight lines, Fitting of exponential curves, Fitting of second degree				
	Parabolic curves				
	Probability Distribution				
Unit-3	Random variables, Discrete Probability distribution, Continuous probability	07			
Omt-3	distribution, Binomial Distribution, Poisson Distribution, Normal	Hours			
	Distribution.	Hours			
	Section – II				
Unit-4	Statistical Inference-Test of Hypothesis				
	Introduction, Null Hypothesis, Alternate Hypothesis, Statistic, Critical				
TI:4 A	Region Errors in testing Level of Significance. Test for population mean				
UIIIt-4	equality of population means population proportion & equality of population	Hours			
	proportions, Test of significance for small samples: t- test, Chi- Square Test,				
	Test of significance for large samples.				
	Introduction to Fuzzy sets				
TI:4 5	Introduction, Definition of Fuzzy set, Membership function, Difference	07			
Unit-4 S II R e p T II b	between Crisp set and Fuzzy set, Basic concepts of fuzzy sets, Basic	Hours			
	operations on fuzzy sets, Properties of fuzzy sets.				
	Numerical Methods and Number series				
	Numerical solution of algebraic and transcendental equations: Bisection	0.6			
Unit-6	Method, Newton Raphson Method, Secant Method, Method of successive	06			
	approximations Number Series revision : Arithmetic Series , Geometric	Hours			
	series & Harmonic Series				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	1	1	1					1
CO2	3	2		1								1
CO3	3	2										1
CO4	3	1										1
CO5	3	1										1

| References | Text Books : | | Higher Engineering Mathematics, Dr. B. S. Grewal, Khanna Publishers, Delhi, 42nd Edition, 2012 | A text book of Engineering Mathematics, N. P. Bali, Iyengar Laxmi Publications (P) Ltd., New Delhi 9th Edition (2014) | Reference Books : | Statistical Methods, S. P. Gupta, Sultan Chand & Sons | Numerical methods, Dr. B. S. Grewal, Khanna Publishers, Delhi | Probability and Statistics, John Schiller, Murray R. Spigel, Schaum's outlines. | Fuzzy Sets and Fuzzy Logic: Theory and Applications George J. Klir and Bo Yuan, Prentice | Hall 1995 | SWAYAM Courses (Operational Timestamp: Thu, 25-Jul-2024 on 7:00 AM) | https://nptel.ac.in/courses/102101056 (Unit 1 to Unit 4)

2 https://nptel.ac.in/courses/111102130 (Unit 5)
 3 https://nptel.ac.in/courses/122102009 (Unit 6)

23UG-PCC-CSE302-Digital System and Microprocessor

Click for Syllabus Structure

ng Scheme

Evaluation Scheme **Teaching Scheme** : 2 Hrs/Week Lectures **ISE**: 40 Marks Credits **ESE**: 60 Marks

Cours	se Objective :	
1	To study and perform arithmetic operations on number system.	
2	Introduce the basics of Minimizing Boolean functions by using various te like K-Map method and implement by using suitable Logic gates and MS	
3	To understand the functionality and design of Combinational and Sequent Circuits.	tial logic
4	To overview of microcomputer System and Programming Model of 8086 microprocessors.	
5	To write and execute the assembly language programs using 8086 Instruc	tion sets.
Cours	se Outcomes :	
COg	At the end of successful completion of the course, the students will	Bloom's
be able to	Taxonomy	
CO1	Perform the Number conversions ,Realization of basic logic gates, digital arithmetic and various reduction techniques of digital logic circuit	Understand
CO2	Design and implementation of Combinational and Sequential logic circuit	Apply
CO3	Interpret the architecture of the 8086 microprocessor, addressing modes and Assembler directives	Understand
CO4	Demonstrate of the various instructions set in 8086 microprocessor.	Understand
CO5	Write and Execute Assembly Language Program for given problems.	Apply

Course	Descrip	tion	:	
This Co	urse is de	esig	ned to realize the standard building blocks of digital system and	
micropro	ocessor.			
Рионоси	igitag .	1	Engineering Mathematics-I [23FY102]	
Prerequisites: 2 Computer Programming in C [23FY111]		Computer Programming in C [23FY111]		
			Section – I	
	Numbe	er S	ystem and Digital Arithmetic	
	Numbe	er C	Conversion & Codes: Binary to Decimal, Decimal to Binary,	
	Octal N	Jum	ber System, Hexadecimal Number System, Binary Codes, and	05
Unit-1	Alphan	um	eric Codes. Binary Addition, Representing Signed Numbers, and	05 Hours
	Additio	n ir	n 2'S Compliment System, Subtraction in2'S Compliment System,	Hours
	Binary	Mu	ltiplication, Binary Division, BCD Addition, and Hexadecimal	
	Arithm	etic		

	Basic Logic Circuits	
TT 1. A	cic Circuits: Truth Tables, OR Operation with OR Gate, AND Operation in AND Gate, NOT Gate, Exclusive-OR, Exclusive-NOR Gate and versal Gates. Describing, Evaluation & Implementing of Logic Circuits ebraically, Boolean Theorems, Sum of Product forms, Algebraic uplification, Karnaugh Map Method ,De-Morgan's Theorems inition of Combinational logic: Adder, Subtractor, Encoder, Decoder, Itiplexer, Demultiplexer, Sequential Logic: Clocked S-R Flip Flops, cked J-K Flip Flops, Clocked D Flip Flops, D-Latch. Parity Generator Checker, Application of Flip flops. Registers, Counters, Shift Registers. ple Counters. Section – II Erocomputers and 8086 Microprocessor Erview of Microcomputers System: Hardware, Software, Address, heral Operation of Computers, addressing modes 8086 Architecture: J Architecture, Internal operations. Programming Model of eroprocessor, Real Mode Memory 6 Assembly Language Programming-I emble Instruction Format, Assembler: Introduction to Assembler and embler Directives, Data Transfer Instructions, Arithmetic Instructions, inch Instructions 6 Assembly Language Programming-II pp Instructions, NOP and HLT Instructions, Flag manipulation	05
Unit-2	Universal Gates. Describing, Evaluation & Implementing of Logic Circuits	Hours
	Algebraically, Boolean Theorems, Sum of Product forms, Algebraic	
	Simplification, Karnaugh Map Method ,De-Morgan's Theorems	
	Combinational and Sequential Logic Circuits	
	Definition of Combinational logic: Adder, Subtractor, Encoder, Decoder,	
Unit-3	Multiplexer, Demultiplexer, Sequential Logic: Clocked S-R Flip Flops,	05
UIIIt-3	Clocked J-K Flip Flops, Clocked D Flip Flops, D-Latch. Parity Generator	Hours
	and Checker, Application of Flip flops. Registers, Counters, Shift Registers.	
	Ripple Counters.	
	Section – II	
	M:	
Unit-4	Microcomputers and 8086 Microprocessor	
Unit-4	Overview of Microcomputers System: Hardware, Software, Address, General Operation of Computers, addressing modes 8086 Architecture: CPU Architecture, Internal operations. Programming Model of Microprocessor, Real Mode Memory	05 Hours
Unit-4	Overview of Microcomputers System: Hardware, Software, Address, General Operation of Computers, addressing modes 8086 Architecture: CPU Architecture, Internal operations. Programming Model of	
	Overview of Microcomputers System: Hardware, Software, Address, General Operation of Computers, addressing modes 8086 Architecture: CPU Architecture, Internal operations. Programming Model of Microprocessor, Real Mode Memory	
Unit-4 Unit-5	Overview of Microcomputers System: Hardware, Software, Address, General Operation of Computers, addressing modes 8086 Architecture: CPU Architecture, Internal operations. Programming Model of Microprocessor, Real Mode Memory 8086 Assembly Language Programming-I	Hours
	Overview of Microcomputers System: Hardware, Software, Address, General Operation of Computers, addressing modes 8086 Architecture: CPU Architecture, Internal operations. Programming Model of Microprocessor, Real Mode Memory 8086 Assembly Language Programming-I Assemble Instruction Format, Assembler: Introduction to Assembler and	Hours 05
	Overview of Microcomputers System: Hardware, Software, Address, General Operation of Computers, addressing modes 8086 Architecture: CPU Architecture, Internal operations. Programming Model of Microprocessor, Real Mode Memory 8086 Assembly Language Programming-I Assemble Instruction Format, Assembler: Introduction to Assembler and Assembler Directives, Data Transfer Instructions, Arithmetic Instructions,	Hours 05
Unit-5	Overview of Microcomputers System: Hardware, Software, Address, General Operation of Computers, addressing modes 8086 Architecture: CPU Architecture, Internal operations. Programming Model of Microprocessor, Real Mode Memory 8086 Assembly Language Programming-I Assemble Instruction Format, Assembler: Introduction to Assembler and Assembler Directives, Data Transfer Instructions, Arithmetic Instructions, Branch Instructions	Hours 05 Hours
	Overview of Microcomputers System: Hardware, Software, Address, General Operation of Computers, addressing modes 8086 Architecture: CPU Architecture, Internal operations. Programming Model of Microprocessor, Real Mode Memory 8086 Assembly Language Programming-I Assemble Instruction Format, Assembler: Introduction to Assembler and Assembler Directives, Data Transfer Instructions, Arithmetic Instructions, Branch Instructions 8086 Assembly Language Programming-II	Hours 05 Hours

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	2	1	2	1	2	3	2	2	2
CO2	3	2	3	1	1	-	-	2	-	2	-	1
CO3	-	2	1	2	2	-	-	2	-	2	-	2
CO4	2	2	-	-	-	-	-	1	2	2	1	2
CO5	3	2	1	-	1	-	-	-	2	1	2	1

References

Text Books:

- Digital System, Principles and Applications, Ronal Tocci, Neal Widmer, Gregory Moss, Pearson Education, 10th Edition (2009)
- Microcomputer Systems, The 8086/8088 Family Architecture, Programming and Design, Yu-Cheng Liu Glenn A Gibson, PHI, 2nd Edition (1998)

Reference Books:

- 1 Digital Logic and Computer Design, M. Morris Mano, Pearson Education, 1st (2004)
- The Intel Microprocessors 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium, Pentium Pro Processor, Pentium –II, Barry B. Brey, Pearson Education, 8th Edition, (2009)

SWAYAM Courses (Operational Timestamp: Thu, 25-Jul-2024 on 7:00 AM)

NPTEL Course on Digital Circuits | Prof.Shantanu Murthy | IIT, Kharagpur https://onlinecourses.nptel.ac.in/noc24_ee147/preview

Virtual Lab

Digital Application Lab (New)

1 https://daiitb.vlabs.ac.in/Introduction.html&sa=D&source=editors&ust=1720505407003556&usg=AOvVaw02o9LVE79TfDtg3dkM18bk

23UG-PCC-CSE303- Data Structures

Click for Syllabus Structure

Teaching Scheme
Lectures: 3 Hrs/Week
Credits: 2

Evaluation Scheme
ISE: 40 Marks
ESE: 60 Marks

Cours	Course Objective :						
1	To Make the students familiar with basic data structures.						
2	To Provide students with foundation in computer programming and probl	em solving.					
3	To Enable the students to select appropriate data structures in computer a	pplications.					
4	To Provide the detail of implementation of various data structures						
Cours	Course Outcomes:						
COs	At the end of successful completion of the course, the students will	Bloom's					
COS	be able to	Taxonomy					
CO1	Explain the definitions and basic concepts of data structures.	Remember					
CO2	Identify the appropriate sorting and searching algorithms for a given problem size/datasets.	Understand					
CO3	Discuss the use of tree and graph data structure.	Understand					
CO4	Implement Stack, Queue and linked list.	Apply					
CO5	Choose appropriate data structure for solving real time problems.	Apply					

Course Description:

The course is designed to develop skills to design and analyze simple linear and non-linear data structures. It strengthens the ability of the students to identify and apply the suitable data structure for the given real world problem.

Prerequisites:		1	Computer Programming in C [23FY111]						
	Section – I								
	Basic of Data Structures								
Unit-1	Definit	ion,	Primitive and Non-Primitive data structures, Operations on data	04					
Umt-1	structu	re F	Recursive and non recursive algorithm, Introduction to pointers,	04 Hours					
	Dynam	ic N	Memory Allocation	Hours					
	Searching and Sorting Techniques								
Unit-2	Searching Techniques: Linear search, Binary search, complexity								
Umt-2	comparisons and Analysis. Sorting Techniques: Bubble sort, Selection sort,								
	Insertion sort, Merge sort, Quick sort, Radix sort.								
	Linear	Da	ta Structures						
	Stack:	Def	inition, operations, Array representation of stack, Applications of						
Unit-3	Stack (Quei	ue: Definition, operations, Array representation of queues, Types	07					
	of Que	ue -	Circular queue, Priority queue, Double Ended Queue,	Hours					
	Applie	atio	ns of Queue.						

Section – II							
	Linked Lists						
Unit-4	Definition, Types of Linked Lists, Operations, implementation and						
Omt-4	applications of singly, doubly and circular linked lists. Linked representation	Hours					
	of stack and Queue.						
	Trees						
Unit-5	Definition, Tree Terminology, Static And Dynamic Representation, Binary						
Unit-3	tree, Types of Binary Tree, Binary Tree traversals, Binary search tree, AVL						
	search tree, Heaps- Operations and their applications, Heap Sort.						
	Graphs						
	Basic concept of graph theory, Terminology and Applications, Types of	06					
Unit-6	Graphs, Representation of graphs using Adjacency matrix and Adjacency	Hours					
	list, graph traversal techniques- BFS and DFS, Graph representation using						
	sparse matrix.						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	1	1	1	1	-	-	1	2
CO2	3	2	2	1	1	1	1	1	-	-	1	2
CO3	3	2	1	1	1	1	1	1	-	-	1	2
CO4	3	2	1	1	1	1	1	1	-	1	1	2
CO5	3	3	2	2	1	1	1	1	-	-	1	2

Re	References						
Te	Text Books:						
1	Schaum's Outlines Data Structures, Seymour Lipschutz, McGraw Hill						
Re	Reference Books:						
1	Data Structure using C, A. M. Tanenbaum, Y. Langsam, M. J. Augenstein, PHI						
2	Data Structures- A Pseudo code Approach with C, Richard F. Gilberg and Behrouz						
	Forouzon, 2 nd Edition						
3	Data Structures through C, Yashvant P Kanetkar, BPB						
4	Understanding and Using C, Richard Reese, O'Reilly Media; 1st edition						
SV	SWAYAM Courses (Operational Timestamp: Thu, 25-Jul-2024 on 7:00 AM)						

	NPTEL Course on Data Structure and Algorithm using JAVA Prof.Debasis , Samanta IIT,						
1	Kharagpur.						
	https://nptel.ac.in/courses/106105225						
2	Data Structures And Algorithms Prof.Naveen Garg IIT Delhi						
	https://nptel.ac.in/courses/106102064						
Vi	rtual Lab						
1	Virtual Lab on Data Structure-1 Virtual Lab on Data Structure-1						
1	https://iitb.vlabs.co.in/outreachportal/ncocdc/list_of_labs.html						

23UG-PCC-CSE304-Software Engineering

Click for Syllabus Structure

Teaching Scheme

Lectures: 2 Hrs/Week

Credits: 2

Evaluation Scheme

ISE: 40 Marks

ESE: 60 Marks

Cours	Course Objective :						
1	To understand software process models and importance of Software Development Life Cycle (SDLC)						
2	To learn of software requirements gathering and analysis process and prej (Software Requirement Specification) document.	pare SRS					
3	To understand the different software design and architectural styles.						
4	To learn different software testing approaches and software quality management						
Cours	se Outcomes :						
COs	At the end of successful completion of the course, the students will	Bloom's					
COS	be able to	Taxonomy					
CO1	Describe various software engineering concepts, Software Development Process Models (SDPMs)	Remember					
CO2	Interpret the structure and essential sections of Software Requirement Specifications (SRS) documents	Understand					
CO3	Describe different architectural views and identify software architecture for a given problem	Understand					
CO4	Design and demonstrate Software system or applications using SRS document.	Apply					
CO5	Identify different software testing techniques and understand standards related to software reliability and quality management.	Understand					

Course	Course Description :								
This cou	This course provides fundamentals of Software Development Life Cycle (SDLC), principles of								
software	engineering	g practices and introductory concepts of software project management	nt						
Prerequ	Prerequisites: 1								
	Section – I								
	Introduction to Software Engineering								
	Cost, Schedule & Quality, Scale and Change, Software Processes: Process &								
Unit-1	Project, Software Development Process Models: Waterfall model,								
Umt-1	Prototypin	g, Iterative Development, Rational Unified Process, Time boxing	Hours						
	Model, Extreme programming and agile software development, Using								
	process models in a project, Project Management Process								
Unit-2	Software Requirement Engineering 04								

	Requirement Gathering and Analysis, Software Requirement Specification (SRS)	Hours						
	Case Study 2.1							
	Gather the requirements for automation of the office work at CSE department							
	Case Study 2.2							
	Study the SRS of Library Management Software. Write SRS in IEEE format for given Project Statement							
	Case Study 2.3							
	Study the functional and non-functional requirements of Library							
	Management Software (or any software) Identify the important functional							
	and non-functional requirement for given Project Statement							
	Software Architecture							
	Role of Software Architecture, Architecture View, Component and Connector View, Architecture styles for Component and Connector View,							
Unit-3	Evaluating Architectures. Project Planning: Sliding Window Planning,							
	Software Project Management Plan (SPMP) Document, COCOMO Model.							
	Project Scheduling: WBS, Activity Networks, PERT, Gantt Charts.							
	Case Study 3.1							
	Prepare SPMP document for allocated problem.							
	Section – II							
	Software Design							
	Design Concepts, Function Oriented Design: Structure Charts, Structured							
	Design Methodology, An Example. Object Oriented Design: OO Concepts,							
Unit-4	Unified Modeling Language (UML), A Design Methodology, Examples.	05 Hours						
	Detailed Design, Verification, Metrics							
	Case Study 4.1							
	Study the design of Library Software / or any project statement							
	Coding and Testing							
Unit-5	Coding, Code Review, Software Documentation, Testing, Unit Testing, Black-Box Testing, White-Box Testing, Program Analysis Tools, Integration Testing, System Testing Case Study 5.1							
	Study of Automation Testing Tool: Selenium							
T T • · ·	Software Reliability and Quality Management	04						
Unit-6	Software Reliability, Software Quality, ISO 9000, SEI Capability Maturity	Hours						
	Model, Six Sigma							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	1	-	1	1	2	1	-	1
CO2	2	2	3	1	1	1	-	1	1	1	-	1
CO3	1	1	2	-	1	-	-	-	-	1	-	-
CO4	1	1	2	2	-	-	-	-	-	-	-	-
CO5	3	2	-	-	-	-	-	-	2	-	-	1

Re	References							
Te	Text Books :							
1	Software Engineering: A Precise Approach, Pankaj Jalote, PHI, 2 nd Edition 1988							
2	Fundamentals of Software Engineering, Rajib Mall, PHI,3 rd Edition, 2009							
Re	ference Books :							
1	Software Engineering, Ian Sommerville, Pearson,9 th Edition, 2017							
2	Software Engineering : A Practitioner's Approach, Roger Pressman, McGraw-Hill, 6 th							
	Edition, 2004							
3	The Unified Modeling Language User Guide Grady BoochIvar Jacobson James Rumbaugh							
)	Addison-Wesley 2 nd Edition,2005							
SV	VAYAM Courses (Operational Timestamp: Thu, 25-Jul-2024 on 7:00 AM)							
1	NPTEL Course on Software Engineering Prof. Rajib Mall IIT							
1	Kharagpurhttps://onlinecourses.nptel.ac.in/noc19_cs69/preview							

23UG-PCC-CSE305-Discrete Mathematical Structure

Click for Syllabus Structure

Teaching Scheme
Lectures: 2 Hrs/Week
Credits: 3
Tutorials: 1 Hr/Week
Evaluation Scheme
ISE: 40 Marks
ESE: 60 Marks
ISA: 25 Marks

Cours	se Objective :							
1	To expose the students to the mathematical logic related to computer science areas							
2	To enhance the problem solving skills in the areas of theoretical computer	r science.						
3	To use mathematical concepts in the development of computer application	ns.						
Cours	se Outcomes :							
COs	At the end of successful completion of the course, the students will	Bloom's						
COS	be able to	Taxonomy						
CO1	Illustrate the concepts of propositional logic ,predicate Calculus and Set	Understand						
CO2	theory Operations on Sets, relations, functions and Lattice	Apply						
CO3	Classify the algebraic system with their Properties	Understand						
CO4	Use Boolean algebra to represent Boolean Logic and perform operations.	Apply						
CO5	Demonstrate and utilize Graphs theory to solve graph related problems	Apply						

Course	Course Description :							
This cou	This course provides detailed insights on Discrete Mathematics used in Computer Science							
Prerequisites: 1 Concepts of Basic Mathematics								
	Section – I							
	Mathematical Logic							
Unit-1	Statements & Notations, Connectives, Well-formed formulas & Tautologies,	08						
Omt-1	Equivalence of formulas & Duality law, Tautological Implications, Other	Hours						
	Connectives, Predicate Calculus							
	Set Theory							
Unit-2	Basic concepts of set theory, Operations on Sets, Venn Diagrams, Ordered							
	pairs & n-tuples, Cartesian product	Hours						
	Relations & Functions							
Unit-3	Relations, Properties of binary relations, Representation of relation,	08						
Omt-3	Equivalence Relations, Composition of Binary Relation, POSET & Hasse	Hours						
	Diagram, Functions, Types of Functions							
	Section – II							
Unit-4	Algebraic Systems	05						

	Algebraic Systems: Examples & general properties., Semigroups &	Hours		
	Monoids, Groups: Definitions & Examples, Subgroup & Homomorphism			
	Lattice and Boolean Algebra			
Unit-5	Lattice as partially ordered sets, Lattice as Algebraic Systems, Special			
Omt-3	Lattices, Boolean Algebra: Definitions & examples, Boolean Functions,			
	Representation & Minimization of Boolean Functions			
	Graph Theory			
Unit-6	Basic concepts of graph theory, Paths, Reachability & Connectedness,	07		
Omt-0	Matrix Representations of Graphs, Storage Representation & Manipulations			
	of Graphs, PERT & Related technologies			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2					1						2
CO2	2			1					1			2
CO3	3	1	1	1		1						1
CO4	3	2	2	2	1	1					1	2
CO5	3	2	2	2		1		1			1	1

_	•
Re	ferences
Te	ext Books :
1	Discrete Mathematical Structures with Application to Computer Science, J. P. Tremblay &
1	R. Manohar (MGH International).
Re	ference Books :
1	Elements of Discrete Mathematics, C.L.Liu & D.P.Mohapatra (SIE Edition) TATA-
1	McGraw Hill.
2	Discrete Mathematics and its Applications - Kenneth H. Rosen (AT&T Bell Labs)
3	Discrete Mathematics - Semyour Lipschutz, MarcLipson (MGH), Schaum's outlines
4	Discrete Mathematical Structures – Bernard Kolman, Robert Busby, S.C.Ross and
4	Nadeemur-Rehman (Pearson Education)
SV	VAYAM Courses (Operational Timestamp: Thu, 25-Jul-2024 on 7:00 AM)
	NPTEL Course on Discrete Mathematics - IIT Ropar Prof. Sudarshan Iyengar, Prof. Anil
1	Shukla
	https://onlinecourses.nptel.ac.in/noc24_cs92

23UG-MDM1-CSE306- Statistical Computing

Click for Syllabus Structure

Teaching Scheme
Lectures: 2 Hrs/Week
Evaluation Scheme
ISA: 50 Marks

Credits : 2

Cours	se Objective :								
1	To equip students with the foundational skills to perform basic arithmetic operations, create and manipulate vectors, and work with arrays using R.								
2	Learn to define matrices, including operations like transposition, identity, and arithmetic operations, along with techniques for subsetting and extracting elements.								
3	Grasp the concepts of logical values and operators in R, and perform basic st operations for data manipulation	ring							
4	Develop skills to create, manage, and access lists and data frames, and logical record subsetting								
5	Gain proficiency in using R for basic plotting, handling graphical parameters, and working with various types of data files.								
Cours	Course Outcomes :								
COs	At the end of successful completion of the course, the students will be	Bloom's							
COs	able to	Taxonomy							
CO1	Calculate measures of central tendency, dispersion, and variability such as mean, median, mode, range, quartile deviation, and standard deviation.	Remember							
CO2	Execute various matrix operations such as transpose, identity, scalar multiplication, and other arithmetic operations.	Apply							
CO3	Apply logical operators and relational operators, handle true/false values, and perform basic string operations within data manipulation tasks.	Choose							
CO4	Manipulate lists and data frames, including accessing components, naming and nesting lists, adding columns to data frames, and combining multiple data frames efficiently.	Apply							
CO5	Demonstrate the ability to create plots using coordinate vectors, customize graphical parameters, and manage data files.	Understand							

Course Description:

The course provides an introduction to statistical computing, focusing on practical data analysis using statistical software. Topics include descriptive statistics, probability distributions, hypothesis testing, regression analysis, and data visualization. Students will gain hands-on experience in applying statistical methods to real-world data, preparing them for advanced studies and professional work in data science and analytics.

Prerequisites: 1 Engineering Mathematics-I [23FY102]

	2 Engineering Mathematics-II [23FY201]						
	3 Computer Programming in C Lab [23FY111]						
	Section – I						
	Numeric, Arithmetic and Vectors, Arrays						
Unit-1	R for basic Math: Arithmetic Operations. Vectors: Creating a vector, Sequence, Repetition, sorting &Lengths. Sub setting and Element Extraction, Arrays: Definition, Extraction						
	Matrices and Non Numeric Values						
Unit-2	Defining a matrix: Filling Direction, Row & Column bindings, Matrix Dimensions. Sub setting: Row, Column & Diagonal Extractions, Omitting & Overwriting, Matrix Operations: Transpose, Identity, Scalar, Arithmetic Operations on Metrix. Logical Values: True or False, Relational Operators, Logical operators, String Operations						
	Lists and data frames						
Unit-3	Lists of Objects: Definition and Component Access, Naming and Nesting Data Frames: Construction, Adding data Columns and Combining Data						
	Frames, Logical Record Subset						
	Section – II						
	Basic Plotting and File handling						
Unit-4	Using Plot with Coordinate Vectors, Graphical Parameters: Automatics Plot Types, Title and Axis Labels, Color, Line & point Appearances and Plotting Region Limits, R-Ready data sets: built-in data sets, Contributed data sets Reading in External Data Files: Table Format, Spreadsheet Workbooks, Web-Based Files, Other file Formats, Writing out data Files & Plots: data sets, Plots & Graphic files	05 Hours					
	Loops and Functions	0.4					
Unit-5	Scoping, Argument Matching, If statements, Loops Function Command, Arguments, Specialized Functions	04 Hours					
	Elementary Statics						
Unit-6	Describing Raw Data, Summary Statics (Centrally: Mean, Median & Mode. Counts, Percentages, & Proportions), Quantiles, Percentiles, & Five number Summary Spread: Variance, Standard Deviation, Covariance and Correlations Outliers	06 Hours					
	College Complete						

	PO	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CC)1 (3	3		2	2							
CC)2	3	3			1							

CO3	3	2	 	2	 	 	 	
CO4	3		 	3	 	 	 	
CO5	2		 	3	 	 2	 	

References

Text Books:

- 1 The Book of R, Tilman M. Davies, No Starch Press, San Francisco, 1st Edition (2016)
- 2 Statistics With R Programming, Rakshu, JNTU, McGraw-Hill Education (2018)

Reference Books:

1 Schaum's Outline of Statistics, McGraw-Hill Education, 6th Edition, 2018

SWAYAM Courses (Operational Timestamp: Thu, 25-Jul-2024 on 7:00 AM)

NPTEL Course on Introduction to R Software Prof. Shalabh | IIT Kanpur https://onlinecourses.nptel.ac.in/noc19_ma33/

23UG-EEC1-CSE307-1- Entrepreneurship Management

Click for Syllabus Structure

Teaching Scheme
Lectures: 2 Hrs/Week

Evaluation Scheme
ISA: 25 Marks

Credits : 2

Cours	se Objective :						
1	Understand the characteristics, qualities, and functions of an entrepreneur.						
2	Analyze the role of Small Scale Industries (SSIs) in economic developme	ent.					
3	Identify and evaluate various sources of institutional support for SSIs.						
4	Develop a comprehensive project report, including feasibility studies and	planning.					
Cours	se Outcomes :						
COs	At the end of successful completion of the course, the students will	Bloom's					
COS	be able to	Taxonomy					
CO1	Recall the characteristics, qualities, and functions of an entrepreneur.	Remember					
CO2	Understand the role of Small Scale Industries (SSIs) and their impact	Understand					
	on economic development.	A 1					
CO3	Identify and compare various sources of institutional support available for SSIs.	Analyze					
CO4	Develop comprehensive project reports including feasibility studies and	Apply					
CO4	detailed planning.	11 0					
CO5	Examine and compare different forms of industrial ownership,	Analyze					
	identifying their advantages and disadvantages.						

Course Description:

This course introduces students to Entrepreneurship Management, focusing on starting and managing small businesses. Topics include characteristics of successful entrepreneurs, the role of small-scale industries in economic development, institutional support, business planning, feasibility studies, and forms of industrial ownership. Practical and theoretical insights prepare students for entrepreneurial challenges and opportunities.

		1	Communication Skills [23FY106]					
Prerequisites:		2	Employability Enhancement Skills [23FY115]					
		3	Inquisitive Learning [23FY115T]					
			Section – I					
	Entrep	ren	eurship					
	Characteristics of Entrepreneur, Qualities of an Entrepreneur, Functions of							
TT24 1	an Entrepreneur ,Types of Entrepreneur Development of Entrepreneurship,							
Unit-1	Stages	in E	Entrepreneurial Process, Role of Entrepreneur in Economic	Hours				
	development, Entrepreneurship in India, Barriers of Entrepreneurship,							
	Women Entrepreneurs							

	Small Scale Industry	
	Objectives of SSIs, Scope of SSIS, Role of SSI in Economic Development,	
Unit-2	Advantages of SSIs, Steps to Start a SSI, Government Policy towards SSI,	05
	World Trade Organisation (WTO), All India Institutions, State Level	Hours
	Institutions, Fund-Based Institutions, Ancillary Industry and Tiny Industry,	
	Ancillary Industry	
	Institutional Support	
	Institutions to assist SSI, State Small Industries Development Corporation	
	(SSIDC), Small Scale Industries Board (SSIB), District Industries Centres	
Unit-3	(DICs) / Single Window Concept, Technical Consultancy Organisations	05
UIIIt-3	(TCOs), Small Industries Service Institutes (SISIs), Industrial Credit and	Hours
	Investment Corporation of India Ltd. (ICICI), National Small Industries	
	Corporation (NSIC), Small Industries Development Organisation (SIDO),	
	Industrial Development Bank of India (IDBI)	
	Section – II	
	Preparation of Project	
Unit-4	Project Identification, Project Selection, Project report-Need and	05
Omt-4	Significance, Contents of Project Report, Project Formulation, Specimen of a	Hours
	Project Report	
	Business Opportunities	
Unit-5	Identification of Business Opportunities, Sources of Business Ideas, Market	05
Omt-3	Feasibility Study, Technical Feasibility Study, Financial Feasibility Study,	Hours
	Social Feasibility Study	
	Industrial Ownership	
	Sole proprietorship, Advantages of Sole Proprietorship, Disadvantages of	
Unit-6	Sole Proprietorship, Definition and Meaning of Partnership, Characteristics	05
Omt-0	of Partnership, Kinds of Partners, Partnership Agreement or Partnership	Hours
	Deed, Registration of Partnership Firm, Rights, Duties and Liabilities of	
	Partners.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3										3	3
CO2		2	2							3	3	3
CO3			2	2						2	3	3
CO4					3	3	3	3				

CO5					2		2
COS	 	 	 	 	3	 	3

Re	eferences
Te	ext Books :
1	Management and Entrepreneurship N.V.R. Naidu, T Krishna Rao
Re	eference Books :
1	Entrepreneurship Development and Small Business Enterprises - Poornima M. Charantimath,
	Pearson
2	Small Scale Industries in India: Problems and Prospects - B.S. Bodla, Sultan Chand & Sons
3	Indian Economy: Performance and Policies - Uma Kapila, Academic Foundation
SV	VAYAM Courses (Operational Timestamp: Thu, 25-Jul-2024 on 7:00 AM)
1	Entrepreneurship By Prof. C Bhaktavatsala Rao IIT Madras
1	https://onlinecourses.nptel.ac.in/noc24_mg93/preview
2	Understanding Incubation and Entrepreneurship Dr. B.K. Chakravarthy IIT Bombay
	https://nptel.ac.in/courses/107101092

23UG-VEC1- CSE308-1- Object Oriented Programming using C++

Click for Syllabus Structure

Teaching Scheme Evaluation Scheme

Lectures: 2 Hrs/WeekISA: 25 MarksCredits: 1ESE(POE): 50 Marks

Practical : 2 Hrs/Week

Cours	Course Objective :				
1	To learn advanced features of the C++ programming language as a continuation of the previous course.				
2	To learn the characteristics of an object-oriented programming language: data abstraction, inheritance, and dynamic binding of the messages to the methods				
3	To learn the basic principles of object-oriented design and software engineering in terms of software reuse and managing complexity				
4	To enhance problem solving and programming skills in C++ with extensive programming projects				
5	To become familiar with the UNIX software development environment.				
Cours	se Outcomes :				
COs	At the end of successful completion of the course, the students will	Bloom's			
COS	be able to	Taxonomy			
CO1	Understand basic concepts of Object Oriented Programming.	Understand			
CO2	Write well-structured C++ programs, including the use of classes, objects, constructors, destructors, and member functions to solve computational problems.	Understand			
CO3	Implement the features of an object-oriented programming language	Apply			
CO4	Implement the concept of template, exception handling and file handling using C++	Apply			
CO5	Implement the solution for diverse problem using C++	Apply			

Course Description:

The course introduces students to the fundamental concepts and principles of object-oriented programming (OOP) It helps students to choose proper OOP concepts to solve different problems. Upon completion, students should be able to write efficient, reusable programs for a given problem using OOP concepts

Prerequisites: 1 Computer Programming in C [23FY111]						
Section – I						
	Basics of Object Oriented Programming					
	The Origins and history of C++, relations of Classes & Structures, Features					
Unit-1	of Object Oriented Programming : Classes & Objects, Encapsulation, Data	04				
	Abstraction, Inheritance, Inline Function, Constructor & Destructor, function	Hours				
	overloading & Operator overloading, classes, Friend functions, Friend class					

	Functions in C++				
	Static class member, Static Member Function, Scope resolution Operator,				
Unit-2	Access members Data member & member Function, Defining member				
	functions, Passing Object to Functions, Pointers in C++, Dynamic				
	Allocation Pointers :- New & Delete Operator				
	Polymorphism in C++				
TI:4 2	Functions Overloading, Operator Overloading, Types of Constructors,	0.4			
Unit-3	Destructors, Operator Overloading Using Friend Function, Unary & Binary	04 Hours			
	Operator Overloading	nours			
	Section – II				
	Inheritance & Virtual Function				
	Inheritance, Single Inheritance, Types of Derivations, Multiple Inheritance,				
Unit-4	Multilevel Inheritance, Hybrid Inheritance, Hierarchical Inheritance, Virtual				
UIIIt-4	function, Calling a Virtual function through a base class reference, Virtual				
	functions are hierarchical, Pure virtual functions, Abstract classes, Early and				
	late binding				
	Templates & Exception handling				
	Function Template ,Class Template, Generic Classes ,Generic Functions,				
Unit-5	Applying Generic Functions Type Name, Standard Template Library (STL):-	05			
UIIIt-3	STL Container, STL Algorithm, STL iterator. Exception handling:-	Hours			
	Exception handling fundamentals, Catching, Throwing, & Handling				
	Exception, Exception handling options.				
	I/O System Basics, File I/O				
Unit-6	Streams, File Pointers & Redirections Streams, C++ stream, C++ Predefined				
Omt-0	stream classes, Formatted I/O, C++ file I/O, manipulators, fstream and the				
	File classes, File operations, namespaces, std namespace.				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	1	1	1		1			1	2
CO2	3	1	1	1	1	1		1			1	2
CO3	3	1	1	1	1	1		1			1	2
CO4	2	1	2	1	1	1		1			1	2
CO5	2	2	2	1	1	1		1			2	2

Re	References					
Te	Text Books:					
1	Object oriented Programming in C++, Rajesh K. Shukla (Wiley), India Edition Manohar					
1	(MGH)					
2	The Complete Reference C++, Herbert Schildt, Tata McGraw Hill, 4th Edition					
Re	Reference Books :					
1	Object-Oriented Programming with C++, E. Balaguruswamy, Tata McGraw Hill, 6th Edition					
2	Object oriented Programming With C++, Sourav Sahay, Oxford Press,2 nd Edition					
SV	SWAYAM Courses (Operational Timestamp: Thu, 25-Jul-2024 on 7:00 AM)					
1	NPTEL Course on Programming in Modern C++ Prof.Partha Pratim Das IIT, Kharagpur.					
1	https://nptel.ac.in/courses/106105234					

List of Experiments

Expt.	Experiment Name
1	Implementation of simple class and object concept.
	Create a class called 'employee' that has (1) Emp_code and Emp_name as data
	members. (2) Member function get_data() to input data. (3) Member function display to
	output data. (4) Create array of objects to accept and display the details of at least 5
	employees
2	Implementation of different types of constructors and destructors.
	Write a program to calculate fix deposit for specific no of Years and particular rate by
	using constructor and destroy the object by using destructor
3	Implementation of inline function
	Write a program to find out largest of three numbers by using inline function.
4	Implementation of 'this' pointer
	Write a program to display the value and address of an object using 'this' pointer
5	Implementation of function overloading
	Write a program to compute power (m,n) where • 'm' is double and 'n' is integers • 'm'
	and 'n' are integers
6	Implementation of operator overloading
	Create a matrix class of size m*n overload the '+' Operator to add two matrix objects
7	Implementation of friend function
	Create a class 'Complex' to hold a complex Number, write a friend function to add two
	complex numbers
8	Implementation of friend class

Create a friend class 'Customer' containing member functions withdraw, deposit and				
balance enquiry which access data members from class 'Account'				
Implementation of Multilevel inheritance concept.				
Write a program to implement multilevel inheritance to calculate student result. By				
creating a Class student-name, roll-no, Test-marks, result-average				
Implementation of Hybrid inheritance concept				
The 'MASTER' class derives information from 'ACCOUNT' and 'ADMIN' classes				
which in turn derives information from 'PERSON' class. Define four classes and write a				
Program to create, update and display all information. Person(name, code) Account(pay)				
Admin(Experience)				
Implementation of virtual function.				
Write a program to implement virtual function for Bubble sort and selection sort.				
Implementation of function template.				
Define function template for displaying transpose of Integer and float matrices				
Implementation of class template				
Create a class template to hold two data members, write a program to add two integer				
and double numbers.				
Implement of exception handling.				
Write a program to implement exception handling for Exception divide by zero.				
Implementation of file handling.				
Using class and object write employee information to file named "EMPLOYEE "and by				
reading from the same file display the contents on the screen				

23UG-CEP- CSE309- Field Project

Click for Syllabus Structure

Teaching Scheme
Lecture: 1 Hr/Week

Evaluation Scheme
ISA: 25 Marks

Practical: 2 Hrs/week

Credits : 2

Cours	Course Objective :					
1	To introduce the students to the use of engineering approaches to solve real-time problems.					
2	To adhere to the software engineering approach methods and tasks.					
3	To acquire project management abilities, which involve planning, execution, and evaluation.					
4	To develop the abilities of team building and collaboration.					
Cours	Course Outcomes :					
COs	At the end of successful completion of the course, the students will	Bloom's				
COS	be able to	Taxonomy				
CO1	Do a survey for the field project	Understand				
CO2	Perform the requirements analysis and specifications.	Apply				
CO3	Enhance teamwork and communication skills by working together.	Apply				
CO4	Implementing the concepts of the field project.	Apply				
CO5	Prepare a report and present the field project.	Apply				

Course Description:

The Field Project is designed to provide students with practical and field experience by engaging them in a project that addresses the general aspects of real time problems.

Prerequisites:	1	Communication Skills Lab [23FY106]					
rrerequisites:	2	Software Engineering [23UG-PCC-CSE304]					
Activity		Course Contents	Bloom's				
Activity		Course Contents	Taxonomy				
		Identifying the area of Field Project	Understand				
Activity – 1		Students must choose the area to solve different kinds of					
		problems					
		Problem Identification					
Activity – 2		Students must identity the problem to solve from chosen	Understand				
		area.					
Activity – 3		Visit to Field	Apply				
Activity – 3		Students must visit the chosen area.					
Activity – 4		First Presentation	Apply				

	Student must present the identified problem statement		
	(Synopsis)		
Activity – 5	Requirement Elicitation	Apply	
Activity – 3	Students must elicit the requirement for identified problem.		
Activity – 6	Requirement Analysis	Analysis	
Activity – 0	Students must analyse the requirement for identified problem	Allarysis	
	Preparation of SRS Document as per Industry Standard		
Activity – 7	Students must prepare the document as per IEEE /Industry	Apply	
	Standard		
A ativity Q	Second Presentation	A mmly	
Activity – 8	Student must present on SRS of Field Project	Apply	
	Finalization of modules for field project		
Activity - 9	Students must finalize the number of modules for field	Apply	
	project.		
	Design the modules for field project. (Flowchart and		
Activity – 10	Algorithms)	Apply	
	Students must design modules.		
A otivity 11	Implementation of modules	Annly	
Activity – 11	Students must implement the modules	Apply	
	Report Preparation and Final Presentation		
Activity – 12	Student Must Present their field work in front of panel of	Understand	
	examiner		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	2	1	1	2	1	1	3	2	1	2
CO2	1	2	1	1	1	2	-	1	1	2	1	2
CO3	1	-	1	1	-	1	1	1	2	3	1	2
CO4	1	2	3	2	1	1	-	1	1	2	1	2
CO5	1	1	1	1	2	1	1	1	2	2	2	2

23UG-PCC-CSE301P –Data Structure Lab

Click for Syllabus Structure

Teaching Scheme Evaluation Scheme

Lectures: 4 Hrs/WeekISA: 25 MarksCredits: 2ESE(POE): 25 Marks

Expt. No.	Experiments
	Implementation of Searching Techniques
1	Students Should Write the C Programs for:
	(a) Linear Search algorithm (b) Binary Search algorithm
	Implementation of Sorting Techniques (Part-I)
2	(a) Program for Bubble Sort and find number of iterations
	(b) Program for Insertion Sort and find number of iterations
3	Implementation of Sorting Techniques (Part-II)
3	Program for Selection Sort and find number of iterations.
	Implementation of Stack operations
	Program for Implementation of Stack operations
4	(a) Push
	(b) Pop (c) Display
	(c) Display (d) Peek
	Implementation of Linear Queue operations
5	Program for Implementation of Linear Queue and Circular Queue with operations
	(a) enqueue
	(b) dequeue (c) display
	Implementation of Singly Linked List operations (insertion and deletion from start)
6	Program for Implementation of Singly Liked List with the listed operations
	(a) insert at start
	(b) delete at start
7	Implementation of Singly Linked List operations (insertion and deletion from end)
7	(a) insert at end (b) delete at end
	Implementation of Singly Linked List operations (insertion and deletion from given
	location)
8	(a) insert at given location
	(b) delete at given location (c) search for given data item
	(c) search for given data tiem (d) display
1	\

	Implementation of Doubly Liked List operations (insertion and deletion from start)					
9	Program for Implementation of Doubly Liked List with the listed operations					
	(a) insert at start					
	(b) delete at start					
	Implementation of Doubly Liked List operations (insertion and deletion from end)					
10	Program for Implementation of Doubly Liked List with the listed operations					
	(a) insert at end					
	(b) delete at end					
	Implementation of Doubly Liked List operations (insertion and deletion from given location)					
11	(a) insert at given location					
	(b) delete at given location					
	Implementation of Doubly Liked List operations (Searching & displaying given data					
12	items)					
	(a) search for given data item.					
	(b) display the contents of list from start to end					
	(c) display the contents of list from end to start					
13	Implementation of merging of two linked lists					
13	Write a Program for merging two linked lists					
	Implementation of Binary Tree Traversals Techniques					
	Program for Implementation of Binary Tree to perform recursive traversal methods					
14	(a) preorder					
	(b) postorder					
	(c) inorder					
15	Implementation of creation of Binary Search Tree Traversal					
	Program to creation of binary search tree and its inorder traversal					
	Implementation of techniques for Graph representations					
16	(a) Program to implement Adjacency Matrix Representation of Graph. (b) implement the DFS and BFS traversal mechanism.					

23UG-PCC-CSE302P – Digital System & Microprocessor Lab

Click for Syllabus Structure

Teaching Scheme

Lectures : 2 Hrs/Week

Credits : 1

Evaluation Scheme

ISA(TW) : 25 Marks

ESE(OE) : 25 Marks

Expt. No.	Experiments			
1	Study of Number Conversions			
2	Study of Basic Logic Gates			
3	Realization of Basic Logic Gates using Universal Gates			
4	Design of Half adder and full adder using logic gates			
5	Study of K-Map with examples			
6	Design of 7-segment display.			
7	Study of JK flip flop, SR flip flop, D-flip flop, T-flip flop			
8	Write an 8086 Assembly Language Program (ALP) to perform Addition, Subtraction, Multiplication and Division			
9	Write an ALP to find even and odd number from given data.			
10	Write an ALP to perform Block Transfer.			
11	Write an ALP to perform logical operations.			
12	Write an ALP to perform String manipulation instruction.			

23UG-PCC-CSE305T -Discrete Mathematical Structures

Click for Syllabus Structure

Teaching Scheme

Evaluation Scheme

Tutorial

: 1 Hr/Week

ISA

: 25 Marks

Credits

Tutorial.	Tutorial	
1	Statement formulas & Well-formed formula	
2	Equivalence of formulas & Tautological Implications	
3	Set theory concepts & Set Operations	
4	Relation concepts & Properties of Relations	
5	POSET & Functions	
6	Algebraic Systems & it's Types	
7	Lattices & examples	
8	Boolean Algebra & Boolean Function	
9	Graph Concepts & Matrix Representation	
10	Storage Representation & Applications of graph	

Member Secretary

Board of Studies,

Department of

Engineering

Chairman Board of Studies,

Department of

Computer Science and Computer Science and

Engineering

Chairman Board of Studies CSE DEPT.

Tatyasaheb Kore Institute of Engg. & Technology (Autonomous) Warananagar, Dist. Kolhapur

Dean Academic

TKIET(Autonomous), Warananagar

TKIET(Autonomous), Warananagar

Principal

Dean, Academic Tatyasaheb Kore Institute of Engg & Technology (Autonomous) Warananagar, Dist. Kolhapur

