Third Year B. Tech. In CIVIL Engineering

Syllabus Under Autonomous Status of TKIET, Warananagar

SEMESTER - V

CE501-SOIL MECHANICS

Lectures	:	3 Hrs/Week	Evaluation S	cheme	
Credit	:	3	ISE	:	40 Marks
Tutorials	:		ESE	:	60 Marks

	Course Objectives: The objective of the course is to							
1. To provide a coherent development to the students for the course in the field of soil mechanics & soil improvement techniques								
2. To present different soil conditions, their analysis and applications to design field as a foundation.								
3. To give a practical experience in the implementation of soil properties and its behavior in the wide field of soil mechanics.								
4.	4. To involve the learning methods of soil properties improvisation by compaction, consolidation and ground improvement techniques.							
	Course Outcomes (CO):							
COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy						
CO1	Able to understand, evaluate index and engineering properties of soil	Knowledge Understand						
CO2	Understand the fundamental relationships in properties of soil	Understand						
	Evaluate stresses and permeabilities in soil under different environmental	Understand						
CO3	conditions	Understand						
CO3	_	Understand						
	conditions							

Description

Soils mechanics refers to the art of applying the mechanics of solids to the soil to predict its deformation behavior and strength. Understanding soil mechanics enables engineers and other professionals to create structures with soil and appreciate its interaction with other structures built on it. This course teaches students basic fundamentals of soil, its properties and applications to practical field. Prime focus on permeability and its calculations, fundamentals of soil compaction, methods and consolidation processes, importance of shear strength in design of structures over soil, stress developed in soil, importance of lateral soil pressure, analysis and of design vertical/abutment walls against soil pressure. This course also helps in ap lying different test on soil for its investigation, soil study in deep is essential before beginning of constru tion activities of any structure over it.

K0

ŝ

WARANAN

		1:	Knowledge of different types of soil available in field							
Prerequisites:		es: 2: Compaction process and different types of equipment used for compaction								
		3:	Different types of earthen structures, stress and resultant calculations							
		4.	Units and conversions							
			Section – I							
			SOIL PROPERTIES							
Unit 1	Origin of soil, soil structure, soil phase systems, weight-volume relationship, Index properties of soil – unit weights, water content, specific gravity, void ratio, porosity, air content, degree of saturation, their relationships and significance, particle size distribution by sieve analysis and hydrometer analysis, Atter berg's consistency limits (Liquid limit, plastic limit, shrinkage limit), consistency indices and activity number, unified and Indian standard soil classification system, Casagrande plasticity chart									
			PERMEABILITY AND SEEPAGE ANALY IS							
Unit 2	Darcy's law and its validity, one dimensional permeability factors affecting permeability of soil, intrinsic permeability, determination of permeability of soil by constant head and variable head methods, permeability of stratified soils, seepage through soil, seepage pressure, flow net, flow net applications, uplift pressure, piping, quick sand condition, critical hydraulic gradient. concept of total stress, pore pressure and effective stress under different soil conditions.									
	COMPACTION AND CONSOLIDATION									
Unit 3	test a conte comp const consc one-c of co	Concept of compaction, factors affecting compaction, standard proctor test and modified proctor test as per IS 2720, dry density and moisture content relationship, zero air void line and placement water content. Field compaction control, field compaction equipment with their suitability in construction work, concept of consolidation, factors affecting consolidation, Terzaghi's piston and spring model, Terzaghi's theory of one-dimensional consolidation, lab consolidation tests to find coefficient of consolidation, coefficient of volume change, compression index, coefficient of compressibility, NCC, UCC and OCC								
	_		Section – II							
			STRESS DISTRIBUTION IN SOIL	6 Hrs.						
	Unit 4 Bousinessq theory, assumptions and application to point load, strip load, circular sections, pressure distribution diagrams on horizontal and vertical plane, Radial shear stress, Isobars and pressure bulbs, use of Newmark's charts, Westergaard's theory assumptions and application to uniformly loaded rectangular area, contact pressure for different footings in different soils, equivalent point load method for stress									
		150	in amerent sons, equivalent point ioau methou ioi stress	TA SATTAT						

	calculation, approximate method OR (2V:1H) method for stress calculations.			
	SHEAR STRENGTH OF SOIL			
Unit 5 Concept of shear stress and shear strength, Mohr-Coulomb's theory and failure envelopes for different types of soils such as cohesive soil, cohesionless soil, and composite soils, representation of stress on Mohr's circle, Terzaghi's total stress and effective stress approach, factors affecting shear strength of cohesive and cohesionless soils, determination of shear strength of soil by direct shear test, Triaxial compression test, under UU, CU & CD conditions, unconfined compression test and vane shear test, sensitivity, Skempton pore water pressure parameters.				
	EARTH PRESSURE THEORY			
Unit 6	Concept of earth pressure, plastic equilibrium, earth pressure at rest, active and passive condition, its practical applications, Rankine's earth pressure theory for cohesionless soils under dry, partially and fully submerged condition, horizontal back fill with surcharge, total lateral force on wall, Bell-Rankine's theory for cohesive soils under dry, partially and fully submerged condition, tension cracks in soil, critical height,	6 Hr		

\backslash	PO1	PO2	PO3	PO4	05	PO6	PO7	PO8	PO9	PO10	PO11	P 12	If applicable		
													PSO1	PSO2	PSO3
CO1	1	1	1		1	1									
CO2	2	2			2	2		-		-		-			
CO3		2	2	1	-	1									
CO4		2		2	1	2									
CO5		1		3	2	2							- /	EINSTI	UTEO
CO6	3	1	2	2	1								- 2	WARAN	NAGAR
													1EB	Dist. K	indeulo

REFERENCES

	Text Books
1	<i>"Soil Mechanics and Foundation Engineering" -</i> B. C. Punmia, Laxmi Publication Sixteenth Edition 2017
	"Soil Mechanics and Foundation Engineering" - K. R. Arrora, Standard Publisher, 14 th Edition, December 2020

0

17514

3	"Soil Mechanics and Foundation Engineering" - V. N. S. Murthy, Marcell Decker, Jan 2010
4	<i>"Basic and Applied soil Mechanics"</i> - A. S. R. Rao and Gopal Ranjan, New age International Publication, January 2016
5	"Geotechnical Testing and Instrumentation" - Alam Singh, CBS Publisher, January 2019
6	"Geotechnical Engineering" - C. Venkatramaiah, New age International Publication, Nov. 2016
7	"Geotechnical Engineering" - Purushottam Raj New age International Publication, Jan 2018
	Reference Books
1	Reference Books "Soil Mechanics" - Terzaghi and Peak, Jony Willey and Sons, New York
1 2	

CE502- ATER RESOURCE ENGINEERING

Cre	Lectures:3 Hrs/WeekEvaluation SchCredit:3ISE:40 MTutorials:ESE:60 MCourse Objectives: The objective of the course is								
2. T 3. T 4. T	 To impart the basic knowledge of importance of Hydrology & irrigation in water resources development. To know various hydrometeorological parameters and their estimation. To create awareness about floods, their estimation using various methods. To understand the importance of irrigation in Indian agricultural industry considering cropping patterns. To understand the principles of watershed management and water harvesting. 								
	Course Outcomes (CO):							
COs	COs At the end of successful completion of the course, the student will be able to								
CO1	Apply the knowledge of estimation of hydrometeorol	ogical parameters. Apply Evaluate							
CO2	2 Estimate direct runoff and peak discharge using hydrograph technique. Apply Evaluate								
CO3	CO3 Understand ground water hydrology Knowledg Understand								
CO4	Apply different methods of efficient irrigation and water conservation.Apply								
CO5	Understand Efficient water Storage techniques Knowledge Understand Understand								
CO6	CO6 Estimate reservoir capacity based on crop water requirement Knowledg Understand								

Description:

Water resources engineering has its roots in the tasks of supplying water for human use, removing water when humans are finished using it and developing methods of avoiding damage from excess water (floods). Much of the work of water resource engineers involves the planning and management of constructed facilities that address these tasks. Water resources engineering is the quantitative study of the hydrologic cycle -the distribution and circulation of water linking the earth's atmosphere land and oceans.

	1	Basics of Fluid Mechanics including units and conversions	EINSTITUTE O					
Prerequisites	2	Basic knowledge of soil water relationship including seepage	S MARANAGAR					
	3	Knowledge of flow of Water through open channel	Dist. Kolhapur					
	4	Vision of river, channel, flood, farming operation of water appli	ication etc					
Section – I								

	Hydrology and Precipitation	
Unit 1	Introduction of Hydrology: Definition, Importance and scope of hydrology, Hydrologic Precipitation: Forms and types of precipitation, Methods of measurement, Rain-gauge Network, Determination of average precipitation over the catchment & its numerical Estimation of missing rainfall data, Graphical representation of rainfall - Mass rainfall curves, Double mass rainfall curve, Rainfall hyetograph.	6 Hrs.
	Evaporation and Runoff	
Unit 2	Evaporation: Process, Factors affecting, Measurement and control of	6 Hrs.
	evaporation Evaporation Transpiration: Process, factors affecting, Measurement. Infiltration: Process, Factors affecting and measurement of infiltration, Infiltration indices & its numerical. Runoff: Classification, Factors affecting runoff, Determination of runoff-empirical equations, Rainfall runoff co- relation.	
	Hydrograph and Floods	
Unit 3	Hydrograph: Components of Storm hydrograph, Base flow and Separation of base flow, Direct runoff hydrograph, Unit hydrograph – theory, assumptions and limitations, Derivation and use of unit hydrograph, Conversion of UH of different durations using Principle of	6 Hrs.
	Superposition S-curve hydrograph. Floods: Introduction of river gauging, Estimation of peak flow - empirical equations, rational method Importance of - Design flood, Standard project flood, Maximum probable flood.	
	Section – II	
	Ground Water Hydrology	
Unit 4	Ground Water Hydrology: Occurrence, Distribution and classification of ground water, Darcy's law, Aquifer parameters Hydraulics of Well: Under steady flow conditions in confined and unconfined aquifers. Introduction to Tube wells and open wells.	6 Hrs.
	Irrigation and Minor Irrigation Works	
Unit 5	Introduction to Irrigation: Definition and necessity of irrigation, ill-effects of irrigation, Systems of irrigation - Surface, Sub-surface (Drip irrigation), Sprinkler irrigation; Water logging and land drainage, Minor Irrigation Works: General layout, main components and functioning of 1. Percolation tanks 2. K. T. Weir, 3. Bandhara irrigation 4. Lift irrigation	6 Hrs.
	Water Requirements of Crops	
Unit 6	Water Requirement of Crops: Principal crops and crop seasons, cropping pattern and crop rotation, Classes and availability of soil water, depth and frequency of watering. Duty, delta, base period and their relationship, factors affecting duty, methods of improving duty. Numerical on command	6 Hrs.
	area calculations and reservoir capacity based on crop water requirement.	

\backslash	PO1	PO2	PO3	PO4	05	PO6	PO7	PO8	PO9	PO10	PO11	P 12	If applicable		icable
													PSO1	PSO2	PSO3
CO1	1	-	2		1							-			
CO2	2	1	2		1										
CO3		2	2		1										
CO4		2	2		2									STITUT	EO
CO5	1	2	2										<u>§</u>	DANANAG	AR
CO6	1	2		2	1								E C	ist. Koiha	1722
REFERENCES											3547	TAT &	STREET.		

REFERENCES

	Text Books						
1	"Irrigation Engineering" – S. K. Garg – Khanna Publishers, Delhi.						
2	"Water Resources & Irrigation Engineering" – Dr. K. R. Arora, Standard Publisher.						
3	"Irrigation, Water Resources and Water Power Engineering" – Dr P.N. Modi, Standard BookHouse.						
4	"Irrigation and Water Power Engineering" – Dr. Punmia and Dr. Pande – Laxmi Publications, Delhi						
5	"Engineering Hydrology" – Dr. K. Subramanya, -Tata McGraw Hill, New Delhi.						
	Reference Books						
1	"Hydrology and water resources" - R. K. Sharma, Dhanpatrai and sons, New Delhi.						
2	"Theory and design of irrigation structures" - Varshney, Gupta and Gupta, vol. I and II and III, New Chand and Brothers.						
3	"Irrigation Theory and practice" - Michael, Vikas Publications House.						
4	"Water management" - Jaspal Sing, M. S. Acharya, Arun Sharma, Himanshu Publications.						
5	"Design of M.I. and Canal Structure" - Satyanarayana and R. Murthy, Wiley Eastern Ltd, New Delhi.						
6	"Irrigation Engineering" - Raghunath, Wiley Eastern Ltd, New Delhi.						

CE 03-THEORY OF STRUCTURES

Lectur		4 Hrs./Week		uation Sc						
Credi		4	ISE		Marks					
<u>Tutoria</u>	als :		ESE		Marks					
		Course Objectives: 7	The objective of the cou	urse is						
	1 1 1		l analysis and behavior		rminate structures.					
	•	5	using different methods methods of solution an		itcomes.					
	Course Outcomes (CO):									
COs	At the end of s able to	successful completion	of the course, the stu	ident will	l be Blooms Taxonomy					
CO1	Understand the o	concept of determinacy	y and indeterminacy.		Knowledge					
CO2	Apply various te indeterminate st	echniques of structural ructures.	mechanics to solve		Apply Evaluate					
CO3	Analyze indeter	minate structures by us	sing various approaches	5.	Knowledge Understand					

Description:

Theory of Structures teaches the basic difference between statically determinate structures and Indeterminate structures, The creativity and imagination of an architect come to reality by adopting a suitable structural system. Architects should understand the basic principl s and concepts of structure in order to apply the structural system suitably but Civil engineers are required to use structural design to ensure the safety and stability of the structure before they add in some creative designs into a structure for visual appeal. This course teaches different methods for analysis of indeterminate structures includi_rg frames. The advance software tools for analysis are based on basic fundamentals of these methods. The student is capable to do analysis and design of RCC structures by using fundamentals of theory of structures.

	1	Basic knowledge of Structural mechanics					
	2	Conceptual knowledge of statically determinate struct	uctures				
Prerequisites	3	The basics of different types of beams and loadings	NSTITUTE				
•	4	Knowledge of matrices from Mathematics	Se or				
	5	Basics of analysis and design	WARAMANAGAK				
	6	Different types of analsis methods	Had				
			47.57.4 5				

	Section – I								
	Introduction and Consistent Deformation Method								
Unit 1	Concept of determinacy and indeterminacy, Degrees of freedom and structural redundancy Methods of analysis. Consistent deformation method: propped cantilever with uniform section, fixed beams	6 Hrs.							
	Clapeyron's Theorem								
Unit 2	Clapeyron's theorem of three moments, application to Continuous beams Sinking of supports	6 Hrs.							
	Energy Theorems								
Unit 3	Introduction to Castiglione's theorem and unit load method. unit load method (Degree of S.I. \leq 2), application to statically indeterminate beam	6 Hrs.							
	Section – II								
	Slope Deflection Method								
Unit 4	Introduction to Slope deflection equation, Modified slope deflection equation Application to continuous Beams. Concept of sinking of supports. Portal frame without sway.	6 Hrs.							
	Moment Distribution Method								
Unit 5	Moment distribution method (Degree of S.I. ≤ 2), application to Application to continuous beam. Sinking of supports. Portal frames without sway.	6 Hrs.							
	Matrix Methods								
Unit 6	Introduction to Flexibility Method and Stiffness Method. Stiffness coefficients, Development of stiffness matrix, Equilibrium equations, Applications to beams.	6 Hrs.							

\backslash	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		If appli	icable
													PSO1	PSO2	PSO3
CO1	1	2			1										
CO2	1	2	1	2											
CO3	1	2													
CO4			2	2	2										

REFERENCES

	Text Books								
1	"Structural Analysis" – S. S. Bhavikatti, Vikas Publishing House Pvt, Ltd, January 2021								
2	"Analysis of Structures" - Vazirani and Ratwani, Vol. I & II, Khanna Publishers, January 1999								
3	"Mechanics of Structures" - S. B. Junnarkar, H.J. Shah, Vol-I & II, Charotar Publishing house, January 2012								
4	"Structural Analysis: Matrix approach - Pandit and Gupta. McGraw Hill Education, April 2008								
5	"Structural Analysis" - L.S. Negi and R.S. Jangid, Tata Mc-Graw Hills Publishing House, New Delhi								
	Reference Books								
1	"Basic Structural Analysis" - C.S. Reddy, Tata McGraw Hill Publishing House, New Delhi, April 2017								
2	"Structural Analysis" - Devdas Menon, Narosa Publishing House.								
3	"Matrix analysis of structures" - Gere & Weave. CBS Publishers & Distributors								
4	"Indeterminate structural analysis" - C.K. Wang, McGraw Hill Education, July 2017								

<u>CE-503P</u>

Term work shall comprise of

At least one assignment on each unit with minimum six questions

CE504 - ENVIRONMENTAL ENGINEERING

Lectures	:	3 Hrs/Week		Eval	uatio	on Scheme	
Credit	:	3		ISE	:	40 Marks	
Tutorials	:			ESE	:	60 Marks	
		Course Objectives: The	e objective of	the cou	rse i	s to	
1. 7	Γo understand v	arious sources of water a	nd waste wate	er with	respe	ect to the qu	ality and
C	quantity of wate	r and wastewater (Sewag	(e).				
2. 7	Fo understand the	he concept and working o	of various wat	er and v	waste	ewater treati	nent units and
i	ts design.						
3. U	Understand the	analysis of water distribu	tion and sewa	ge tran	sport	ation system	n.
		Course	Outcomes:				
COs	At the end of able to	successful completion o	f the course,	the stu	dent	t will be	Bloom's Taxonomy
CO1		various sources of water a antity of water.	and wastewate	er with	respo	ect to	Knowledge Understand
CO2	Describe and	design the various water	and wastewat	er treat	ment	t units.	Understand
CO3		special water and wastew various qualities of surfac			eque	ncing of	Understand
CO4	Design the va wastewater.	rious components related	l to transmissi	on wat	er an	d	Understand
CO5	Summarize th	e different water and was	stewater appu	rtenanc	es.		Apply Evaluate

Description:

Environmental Engineering is focused on analysing and understanding the quality of water and waste water. Knowledge of quality of water and waste water allows for the design of WTP and STP. Life of people is dependent on the quality of water supplied and waste water generated. One should know the transportation of water and waste water. This subject will provide the platform for the students to diversified their interest in environmental needs and their implementation. The quality standards of waste water and drinking water will create awareness among the society through civil engineering students. The awareness about major problem of river pollution will be handled effectively after understanding the environmental engineering.

	1	Knowledge about water quality parameters
	2	The sources of waste water generation and their collection
Prerequisites	3	Systems of water supply

	6 INSTITUTE O	2									
	4 Knowledge of fluid mechanics including discharges	15									
	5 River water lift and pollution of river	New Service									
	Section – I										
	Introduction to water supply										
Unit 1	Data collection for water supply scheme, components and layout. Design 6 His period, factors affecting design period.	rs									
	Quantity: Rate of water consumption for various purposes like domestic, industrial, institutional, commercial, fire demand and water system losses, factors affecting rate of demand, Population forecasting.										
	Quality: Water quality parameters, characteristics & significance in water treatment, drinking water quality standards- BIS, WHO Standards.										
	Water intake structures: General design considerations, types such as river intake, canal intake and reservoir intake, Concept of rising main and pumping station.										
	Water treatment										
Unit 2	6 Hi Principles of water treatment processes. Introduction to different types of water treatment flow sheets. Aeration: Principle and Concept, Necessity, Methods, Design of cascade aerator.concept Coagulation & Flocculation- Theory, factors affecting, destabilisation of colloidal particles, types of dosing of coagulants, selection of coagulants, jar tests, rapid mixer & flocculator, Theory of Clariflocculation.Concept of Sedimentation- Theory, types of settling, types of sedimentation tanks, principles & design steps, concept of tube & plate settler.Filtration- Mechanism, head loss development, negative head loss, Types of filters- Slow sand filter, Rapid sand filter & Pressure filter, operation & design of slow sand & rapid sand filter.Disinfection- Theory, factors affecting disinfection, types of disinfectants, types and methods of chlorination breakpoint chlorination. Water softening processes - lime-soda process, ion exchangeDemineralization - Reverse osmosis, electro dialysis	rs									
Unit3	process, ion exchanger commercial action in reverse osmosis, electro diarysis										

	Necessity, location, head requirement, capacity determination by analytical & graphical method. Transmission of water, pumping & gravity mains, choice of pipe materials, forces acting on pressure pipes, leakage & pressure testing of pipes, thrust block concept, corrosion types & control measures. Water distribution systems, method of distributing water, layout pattern, basic system requirements for water distribution system, and methods of network analysis: equivalent pipe method, Hardy-Cross method, design problem. Water supply appurtenances- sluice valve, air relief valve, gate valve, non-return valve, scour valve, fire hydrants water metre, service connections, maintenance & leak detection of water distribution system. Necessity of water audit, water audit in domestic sector, Pre-feasibility report and feasibility report, Concept of preparation of DPR	6 Hrs
	Section – II	
	Components of wastewater	
Unit 4	Wastewater flows, wastewater sources and flow rate, Variations in flow rates and strength, wastewater constituents, Characteristics of Municipal wastewater, Problems on B.O.D. calculations, Quantity of stormwater.Sewerage system, Types, Layout, Types of sewers, Collection system, Appurtenances, Design of sanitary and storm water sewers, Maintenance of sewerage systems Sewage and Sludge pumping, Location, Capacity, Concept of pumping station.	6 Hrs
	Treatment of Wastewater	
Unit 5	Primary & Secondary Treatment-Screening, comminating, Grit removal, Oil and Grease trap Primary settling tank. Secondary Treatment-Activated sludge process, Process, design and operating parameters of ASP, modification of ASP, Operational problems, Concept of trickling filter. Sludge Treatment and disposal, Concept of anaerobic digestion, types of reactors. Low-cost wastewater treatment methods-Principles of waste stabilization pond. Design and operation of oxidation pond, Operation of aerobic & anaerobic Lagoons, Oxidation ditch, Septic tank. Selection of alternative Treatment process flow sheets, Concept of recycling of sewage	6 Hrs
	Stream Pollution	
Unit 6	Stream pollution, Self-Purification, DO sag curve, StreeterPhilp's Equation, Stream classification, disposal of waste water methods, effluents standards for stream and land disposal as per MPCB and CPCB standards	6 Hrs

	co romphing														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	Ι	f applicat	ole
													PSO 1	PSO 2	PSO 3
CO 1	1	2			1							-			
CO 2	1	2	1	2								-			
CO 3	1	2										-			
CO 4			2	2	2							-			
CO 5	1	2	2									-	(and the second		EQU
CO 6	1	2			1							-	W NO	RAMANAN In Kalha	CAR SA
	I			I				I						Hot hour	INT PRO

REFERENCES

414140

	Text Books
1	Environmental Engineering by Peavey, H.S.Rowe, D.R. and Tchobanoglous McGraw Hill Book Company, Indian Edition, July 2017
2	Water Supply and Pollution Control by Viessman W.and Hammer M.J. HarperCollins College Publishers.
3	Water and WasteWater Technology by Hammer M.J. Prentice-Hall of India Private ltd., January 2012, 14 th Edition
4	Water and Wastewater Technology by G.S. Birdie and J.S. Birdie, Dhanpat Rai Publishing Company (p) Ltd, January 2010
5	Elements of Environmental Engineering by Duggal K.N Published by S. S Chand & Co Ltd
6	Water Supply by Garg S.K., Published by Khanna Publishers, 33 rd edition
7	Water Supply and Waste water Disposal by Fair and Gayes, John Wiley Publication, Nov 2010
	Reference Books
1	Manual on Water Supply and Treatment- Government of India Publication1993
2	Water and Waste Water Engineering Vol. I & II, John Wiley Publication, 1966. Fair G. M, Geyer J. C, and Okun D. A
3	Water and Wastewater Technology, Prentice Hall of India Private Limited 1996. Hammer
4	Manual on sewerage & sewage Treatment published by Ministry of Urban Development Govt. of India Msy-2000. 35 PDOP-4-59-85-97, Ministry of Urban development
5	Water and wastewater Technology - Hammer M.J, [Prentice-Hall of India Private ltd.], Sep 2015

CE505 - PROJECT MANAGEMENT

Lectures	:	3 Hrs/Week	Evaluation Scheme
Credit	:	3	ISE : 40 Marks
Tutorials	:	1	ESE : 60 Marks

	Course Objectives: The objective of the course is to					
1.	To learn project management tools.					
2.	To understand Resource management.					
3.	To get acquainted with financial management.					
	Course Outcomes:					
COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy				
CO1	Use the Project planning and management tools in Construction	Knowledge Understand				
CO2	Evaluate and draw project network for estimating time and Cost	Understand				
CO3	Know the techniques of Material Management	Apply				
CO4	Understand the economic comparison of alternatives	Apply				
CO5	Evaluate feasibility of alternatives using investment criteria.	Apply Evaluate				
CO6	To get acquainted with occupational ethics.	Apply				

Description:

Project Management is versatile subject which deals with understanding various aspects of engineering Projects.it covers application of tools of handling project in scientific way. Also, it explores material management techniques along with Economic and Financial analysis of projects.it adds insights into work behavior parameters like safety, health hazards.

	1	Basic knowledge of working of Business organization.									
Prerequisites:	2	Strong ability to do mathematical calculations with logic.									
	3	Financial knowledge of how and money transactions.									
	4.	Basic idea about planning and execution									
		WARAMANAGAR									
		Section – I									

	Project Management Concept						
Unit 1	Principles of Management(H.Fayols), Functions of management, Decision	4.11					
	tree, Work Break down structure, Phases & Agencies of Construction Project.	4 Hrs					
	Network Analysis: CPM						
Unit 2							
	Network compression, Network updating. PERT (only introduction.)						
	Resource Management						
Unit 3	Objectives, Functions, Resource Smoothening and levelling, Inventory Control						
	methods: ABC, EOQ, HML, VED, SDE. (Numerical on ABC&EOQ).	5 Hrs					
	Section – II						
	Financial Management						
Unit 4	Time value of money, Equivalence, Demand and supply theory, Types of	0.44					
	interests, Uniform series factors.	V L MC					
		8 Hrs					
	<i>Economic Comparison Methods</i> : Present worth method, EUAC method, Capitalized cost method.	0 1115					
	Economic Comparison Methods: Present worth method, EUAC method,	0 1115					
Unit 5	<i>Economic Comparison Methods</i> : Present worth method, EUAC method, Capitalized cost method.						
Unit 5	<i>Economic Comparison Methods</i> : Present worth method, EUAC method, Capitalized cost method. Economic Analysis	6 Hrs					
Unit 5	Economic Comparison Methods: Present worth method, EUAC method, Capitalized cost method. Economic Analysis Discounting and No discounting investment Criteria's: - Net present value,						
Unit 5 Unit 6	Economic Comparison Methods: Present worth method, EUAC method, Capitalized cost method. Economic Analysis Discounting and No discounting investment Criteria's: - Net present value, Rate of return, Benefit cost ratio, Payback period method, Breakeven analysis						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		If appli	cable
													PSO1	PSO2	PSO3
CO1	1	1	-	-	1	1			2		1				
CO2	1	1	1	2	-	2			2			1			
CO3	1	2	-	-	-	2	2	2			2	1			
CO4	-	-	1	1	2		1	2		1					
CO5	1	2	2	-	-										
CO6	1	2	-	1	1										

REFERENCES

	Text Books					
-	"Project planning and Control with PERT and CPM" - B. C. Punmia, K. K. Khandelwal, Laxmi Publication, edi. 2002.					
2	"PERT &CPM: Principles and Application" - Srinath L.S, Affiliated East-West Press (Pvt.) Ltd.(1 January 2001).					
3	"Construction Engineering and Management" - Dr. S. Seetharaman, Umesh Publications, 2017.					
4	Financial Management" – Prasanna Chandra, TATA McGraw Hill.2011					
	Reference Books					
1	Engineering Management" – Stoner, Pearson Publication.; Sixth edition (19 January 2018)					
2	. "Construction Project Management" – K.K.Chitkara, TATA McGraw Hill, 1998.					
3	"Project Cost Control in Construction" - Roy Pilcher, Blackwell Scientific Publications. 1994					
4	"Engineering Economics" - Layland Blanck and Torquin, TATA McGraw Hill. 1998					

CE501P - SOIL MECHANICS (Lab)

Practical's: 2 hrs / weekCredits:1

Examination Scheme:

ISA: 25 Marks POE: 50 Marks

Course Objectives: The objective of the course is to

1. To introduces different types of soils and their properties

- 2. To familiar different types of tests to be conducted on soil to study their behavior.
- 3. To understand difference between field tests and lab tests on soil.
- 4. To evaluate and study significance of soil testing

	Course Outcomes (CO):							
COs	At the end of successful completion of the practical's the student will be	Blooms Taxonomy						
CO1	Able to understand evaluation of basic properties of soil in laboratory	Knowledge, Apply						
CO2	Analyze the density, specific gravity, water content and permeability of soil	Analyze						
CO3	Understand and able to evaluate shear strength of soil	Analyze						
CO4	Understand the fundamental relationships in properties of soil	Understand Analyze						

PRACTICALS

A] Performance of at least eight experiments from the following:

Sr. No.	Practical/ Experiment/Tutorial Topic	Hrs.	Bloom's Taxonomy
01	Determination of specific gravity by pycnometer Or density bottle method	2	Knowledge
02	Determination of water content by oven drying method & Pycnometer method	2	Knowledge
03	Particle size distribution by dry sieve analysis	2	Knowledge, Analyze
04	Particle size distribution by hydrometer analysis	2	Knowledge, Analyze
05	Determination of consistency limits (LL, PL, SL)	2	Knowledge
06	Determination of field density by core cutter method	2	Knowledge, Analyze

07	Determination of field density by sand replacement method	2	Analyze
08	Determination of MDD & OMC by standard/Modified proctor test	2	Analyze
09	Determination of coefficient of permeability by variable head method/Constant head method	2	Analyze
10	Determination of shear strength parameters of soil by using direct shear test	2	Analyze
11	Determination of shear strength of soil using Triaxial, Unconfined compression test and Vane shear test (Any one)	2	Analyze

B] One assignment on each unit with minimum five numerical in each assignment

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		If appli	icable
													PSO1	PSO2	PSO3
CO1	2	1	1	1											
CO2	2	1	2	2											
CO3		2	2												
CO4		2													

CO - PO Mapping

Text Books

1. "Soil Mechanics and Foundation Engineering" - B. C. Punmia, Laxmi Publication Sixteenth Edition 2017

REFERENCES

- **2.** "Soil Mechanics and Foundation Engineering" K. R. Arrora, Standard Publisher, 14th Edition, December 2020
- **3.** "Soil Mechanics and Foundation Engineering" V. N. S. Murthy, Marcell Decker, Jan 2010

Reference Books

- **1.** "Soil Mechanics in Engineering Practice,', Karl Von Terzaghi, Wiley-Inter science; 3rd Edition
- **2.** Geotechnical engineering: principles and practices of soil mechanics and foundation engineering, V. N. S. Murthy
- **3.** "Principles of Geotechnical Engineering", Braja M. Das, California State University, Sacramento, Cengage India Private Limited; Ninth edition

CE502P - WATER RESOURCE ENGINEERING (Lab)

Practical's: 2 hrs / week Credits: 1 Examination Scheme: ISA: 25 Marks POE: 25 Marks

Course Objectives: The objective of the	course is to
---	--------------

1. To familiarize the students with determination of average annual rainfall (AAR)

- 2. To familiarize the students with different infiltration losses.
- 3. To familiarize the students with Ground water hydrology
- 4. To introduce the student with minor irrigation structures.

	Course Outcomes:							
COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy						
CO1	Determine different infiltration losses like Phi-index, W- Index	Knowledge, Apply						
CO2	Understand unit hydrograph using method of superposition and S- curve technique	Analyze						
CO3	Understand concept of minor irrigation structures	Understand Analyze						
CO4	Determine crop water requirement	Knowledge, Apply						

Assignments on following topics (at least 6):

Sr. No.	Practical/ Assignments/Tutorial Topic	Hrs.	Bloom's Taxonomy
1	Determination of average annual rainfall using Thiessens polygon & Isohyet map method	2	Apply
2	Consistency of rain gauge station by double mass rainfall curves.	2	Knowledge Apply
3	Determination of evaporation losses, effective rainfall hyetograph infiltration losses – Phi index calculation, Horton's infiltration curve.	2	Apply
4	To develop a unit hydrograph from a total runoff hydrograph resulting from isolated storms.	2	Knowledge, Analyze
5	Alteration of base period of given unit hydrograph using method of superposition and S -curve technique	2	Knowledge
6	Determination of well discharge in a confined/unconfined aquifer.	2	Analyses
7	Layout of Percolation tank, K. T. Weir, Bandhara Irrigation, Lift Irrigation	2	AMAINARANANAGA

公司家

0	Estimating depth and frequency of irrigation on the basis on soil moisture regime concept.	2	Knowledge, Analyze
9	Crop water requirement and irrigation command area calculations	2	Knowledge, Analyze
10	Site visit & report on meteorological station	2	Knowledge,

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		If appli	cable
													PSO1	PSO2	PSO3
CO1	2	1	1	1											
CO2	2	-	2	2											
CO3	1	2	2	-		-			-						
CO4		2		1		-			-						

REFERENCES

	Text Books												
1	"Irrigation Engineering" – S. K. Garg – Khanna Publishers, Delhi.												
2	"Water Resources & Irrigation Engineering" – Dr. K. R. Arora, Standard Publisher.												
3	"Irrigation, Water Resources and Water Power Engineering" – Dr P.N. Modi, Standard BookHouse.												
Reference Books													
	Reference Books												
1	Reference Books "Irrigation Engineering" - Raghunath, Wiley Eastern Ltd, New Delhi.												

CE504P - ENVIRONMENTAL ENGINEERING (Lab)

Practical's: 2 hrs / week Credits: 1 Examination Scheme: ISA: 25 Marks POE: 25 Marks

Course Objectives: T	The objective of the	course is to
----------------------	----------------------	--------------

- 1. To familiarize the students with the quality of water and waste water.
- 2. To familiarize the students design concept of WTP & STP
- 3. To understand working of WTP & STP

	Course Outcomes (CO):												
COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy											
CO1	Determine different properties like pH, Hardness, Acidity, Alkalinity, Chlorides of water and waste water.	Analyse											
CO2	Understand distribution of Water and collection of waste water	Analyse											
CO3	Visit clarify the working of various units	Analyse											
CO4	Explain the Treatment concept of water and wastewater	Understan d Analyse											

PRACTICALS

Sr. No.	Practical/ Experiment/Tutorial Topic	Hrs.	Bloom's Taxonomy
1	рН	2	Analyze
2	Alkalinity	2	Analyze
3	Solids	2	Analyze
4	Chlorides	2	Analyze
5	DO	2	Analyze
6	BOD	2	Analyze
7	COD	2	Analyze
8	Sulphates		Analyze
9	Oil & grease		Analyze

10	Volatile acids	Analyze
11	Design/Analysis problems on Water and sewerage system and treatment system,	Knowledge Apply
12	Visit to Water Treatment Plant and sewage treatment plant & visit report.	Knowledge Apply

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	applicab	ole
													PSO1	PSO2	PSO3
CO1	2	1	1	1											
CO2	2	1	2	2											
CO3		2	2												
CO4		2													

REFERENCES

	Text Books											
1	Environmental Engineering by Peavey, H.S.Rowe, D.R. and Tchobanoglous McGraw Hill Book Company, Indian Edition, July 2017											
2	Water Supply and Pollution Control by Viessman W.and Hammer M.J. HarperCollins College Publishers.											
3	Water and WasteWater Technology by Hammer M.J. Prentice-Hall of India Private ltd., January 2012, 14 th Edition											
4	Water and Wastewater Technology by G.S. Birdie and J.S. Birdie, Dhanpat Rai Publishing Company (p) Ltd, January 2010											
	Reference Books											
1	Manual on Water Supply and Treatment- Government of India Publication1993.											
2	Manual on sewerage & sewage Treatment published by Ministry of Urban Development Govt. of India Msy-2000. 35 PDOP-4-59-85-97, Ministry of Urban development											
3	."Water and Waste Water Engineering Vol. I & II", John Wiley Publication, 1966. Fair G. M, Geyer J. C, and Okun D. A											
	He Dist. Nonicept											

(月本)

CE505P – PROJECT MANAGEMENT (Lab)

Practicals: 2 hrs. / week

1

Credits:

Examination Scheme: ISA: 50 Marks

	Course Objectives: The objective of the course is to										
sch	familiarize the students with Project flow and various tools of Project plan eduling and controlling. o inculcate in students the knowledge of Material management, Finance and										
	Course Outcomes (CO):										
COs	At the end of successful completion of the course the student will be able to										
CO1	Interpret the Project parameters and Build decision making abilities	Knowledge, Apply									
CO2	Draw and Solve the Project Network to find out project duration. Also will able to use advance project planning and Management software like MSP, Primavera.	Analyze									
CO3	Plan material required for Project and ordering techniques.	Analyze									
CO4	Analyze and select best alternative from available. Also, can understand feasibility of project alternative.	Understand Analyze									

PRACTICALS

Sr. No.	Practical/ Experiment/Tutorial Topic	Hrs.	Bloom's Taxonomy
1	Phases and Agencies of Project. Decision tree,	2	Apply
2	Network drawing and solving with CPM technique.	2	Knowledge Apply
3	Use of Software like MSP for Project planning.	2	Apply
4	Finding out Economic Order quantity and studying inventory control techniques.	2	Knowledge, Analyze
5	Problems on Economic comparison methods of project alternatives.	2	Knowledge
6	Occupational Health Hazards, Site Layout.	2	Analyze

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		If applicable	
													PSO1	PSO2	PSO3
CO1	1	1	-	-	1	1			2		1				
CO2	1	1	1	2	-	2	-		2			1			
CO3	1	2	-	-	-	2	2	2			2	1			
CO4	-	-	1	1	2		1	2		1					
CO5	1	2	2	-	-										
CO6	1	2	-	1	1										

REFERENCES

	Text Books					
1	"Project planning and Control with PERT and CPM" - B.C.Punmia,K.K.Khandelwal, Laxmi Publication,edi.2002.					
2	"PERT &CPM: Principles and Application" - Srinath L.S, Affiliated East-West Press (Pvt.) Ltd.(1 January 2001).					
3	"Construction Engineering and Management" - Dr. S. Seetharaman, Umesh Publications,2017.					
4	Financial Management" – Prasanna Chandra, TATA McGraw Hill.2011					
	Reference Books					
	Reference Books					
1	Reference Books Engineering Management'' – Stoner, Pearson Publication.; Sixth edition (19 January 2018)					
1 2						
	Engineering Management" – Stoner, Pearson Publication.; Sixth edition (19 January 2018)					

CE506A- SEMINAR

Lectures	:		Evaluation Scheme
Credit	:		ISE :
Practical's	:	2 Hrs/Week	ESE :

	Course Objectives: The objective of the course is to										
	 To understand, develop research ability & present the knowledge gained from curriculum/field etc. 										
	2. To study the recent trends, technological innovations in civil engineering & interdisciplinary areas.										
3.	To enhance presentation skills.										
	Course Outcomes:										
COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy									
		Гахоношу									
CO1	Summarize the present status and make literature review on the selected topic with current issues to give a state of an art of technological progress in the past through technical report.	Knowledge Understand									
CO1 CO2	topic with current issues to give a state of an art of technological progress in the past through technical report. Deliver seminar presentation using modern tools highlighting the	Knowledge									

Description:

Graduate Student is expected to learn, investigation, methodologies, study relevant research papers, correlate work of various authors/researchers critically, study the concepts techniques & prevailing results, analyze those and prepare a seminar report (25-30 pages of A4 size sheets and submit it in IEEE format) on all these aspects.

		1:	Knowledge of English						
Prerequ	uisites:	2:	Study & understand about research papers						
		3:	Study the concepts techniques & prevailing results						
			Section – I & II						
			Term Work						
1	1 Selection of topic from curriculum / field in civil engineering / interdisciplinary areas on current issue.								
2	Minim	um th	ree presentations as follows,						
	a. Syno	psis	presentation b. Literature review presentation						
	c. Final presentation								
3	Preparation of final report in hard and soft format								

Student has to deliver seminar presentation in front of the faculty of the department and his classm. The concerned faculty should assess the candidates based on quality of seminar work carried out, preparation and understanding of candidates. Some marks should be reserved for the candidate's attendance.

Mapping of POs & COs: If applicable **PO1** PO₂ PO3 **PO4** PO5 PO6 PO7 PO8 **PO9 PO10 PO11 PO12** PSO1 PSO₂ PSO3 1 2 1 COI -----------------------------2 2 1 1 CO2 ----------------------------1 2 CO3 -----------------------------2 2 2 CO4 -----------------------------1 2 2 CO5 ------------------------------2 1 1 CO6 ----------------------------

References:

 Text Books

 1
 Relevant text books on selected topic of seminar.

Reference Books

1 Relevant reference books, journal publications, conferences publications, magazines, open web site sources on selected topic of seminar.

APPROVED BY

Member Secertay Board of Studies

4

Chairman Board of Studies CIVIL ENGG. DEPT. Tatyasaheb Kore Institute of Energ. & Technology (Autonomous)

PRINCIPAL

T.K.I.E.T.Warananagar

Warananagae

E OF ENGIN

Autonomous

Warananagar

(1+)

BKORF

Chairman Board of Studies Academic Dean T.K.I.E.T.Warananagar

Third Year B. Tech. In CIVIL Engineering

Syllabus Under Autonomous Status of TKIET, Warananagar

SEMESTER - VI

CE601 – DESIGN OF STEEL STRUCTURES

Lectures	:	3 Hrs/Week	Evaluation Scheme
Credit	:	3	ISE : 40 Marks
Tutorials	:		ESE : 60 Marks

	Course Objectives: The objective of the course is to									
1. 7	1. To understand the behavior of elements of steel structure.									
	2. To understand the design concept of steel structure.									
3. 7	To have sense of design of professional ethics									
	Course Outcomes:									
COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy								
CO1	Analyze and design different types of welded and bolted connections by using necessary elements for analyzing steel structures.	Remember								
CO2	Analyze and design axially loaded tension member along with its end connections.	Apply, Evaluate								
CO3	List and describe essential elements necessary to analyze and design of compression member.	Apply, Evaluate								
CO4	Analyze and design axially and eccentrically loaded columns along with its different types of column bases.	Apply, Evaluate								
CO5	Analyze and design laterally supported and unsupported beams with their end connections.	Apply								
CO6	Calculate forces acting on gantry girder and its design as laterally unsupported beam.	Remember, Apply								

Description:

The course deals with design of steel structures using "Limit State Design Method". The design methodology is based on the latest Indian Standard Code of Practice for general construction (IS 800:2007). The subject covers all the necessary components such as material specifications, connections and elementary design of structural members for designing industrial steel structures. The course provides material specifications and design considerations. It provides relevant material properties of different types of steel. This course teaches the design of trusses for small and long scale for industrial structures.

	1	Students should locate centroid and find MI of any cross-section.
	2	Students must be able to find effective length and slenderness ratio
Prerequisites	3	Students must be able to draw SFD and BMD for given loading
	4	Capable to evaluate bending moments, axial forces and shear forces
	5	Knowledge of welding and bolting process

	Section – I	
	Introduction & Connections	
Unit 1	Design Philosophy, comparison of LSM &WSM, advantages and disadvantages of steel structures, types of steel structures, grades of structural steel, various rolled steel sections, Types of bolts & welds, analysis and Design of axially and eccentrically loaded bolted and welded connections (subjected to bending and torsion). Loads and load combinations, partial safety factors for load and materials, load calculation for roof trusses.	6 Hrs
	Tension Member based on IS: 800-2007	
Unit 2	Common sections, Net area, modes of failure, load carrying capacity, Design of axially loaded tension members, Design of end connections (Bolted and welded).	6 Hrs
	Design of Compression Member based on IS: 800-2007	
Unit 3	Common sections, economical sections, effective length, slenderness ratio, modes of failure, Classification of cross section, behavior of compression member, Load carrying capacity & Design of compression members	6 Hrs
	Section – II	
	Column & Footing	
Unit 4	Design of column subjected to Axial load Design of lacing system, battening system and column splices Design of slab bases & gusseted base subjected to axial load Design of slab bases & gusseted base subjected to eccentric load	6 Hrs
	Design of Beam based on IS: 800-2007	
Unit 5	Types of sections, behavior of beam in flexure, Design of laterally supported, unsupported beams and built-up beam using flange plates, curtailment of flange plates Check for deflection, shear, web buckling & web crippling, Secondary and main beam arrangement, beam to beam connections	6 Hrs
	Gantry Girder	
Unit 6	Forces acting on gantry girder, commonly used sections, design of gantry girder as laterally unsupported beam, connection details	6 Hrs

	PO1	PO2	PO3	PO4	05	PO6	PO7	PO8	PO9	PO10	PO11	P 12		If appl	icable
													PSO1	PSO2	PSO3
CO1	1	2			1	-			-			-			
CO2	1	2	1	2											
CO3	1	2													
CO4			2	2	2										
CO5	1	2	2			-			-						
CO6	1	2			1										

REFERENCES

	Text Books
1	"Design of Steel Structures (By Limit State Method As Per Is 800—2007" – S.S.Bhavikatti, I K International Publishing House, New Delhi,2009
2	Limit State Design of Steel Structures: <i>V. L. Shah and</i> Veena Gore, Stuctures Publication, Pune,2009
3	IS 800:2007-BIS
4	"Handbook on steel-SP6" BIS
5	"IS – 875, Part - III" -BIS.
	Reference Books
1	Design of Steel Structures, by Dr. N. Subramanian, Oxford University Press, New Delhi,2008
2	Limit State Design of Steel Structures: S.K. Duggal, Tata Mc-Graw Hill India Publishing House,2010
3	Design of Steel Structures: K.S. Sairam, Pearson Education India, 2010
4	Limit state design in structural steel: Dr. M. R. Shiyekar, PHI Learning Pvt. Ltd., 2013
5	Design and Analysis of Steel Structures: Vajrani V. N., Ratwani M. M. and Mehra H., Oscar Publications, 1988

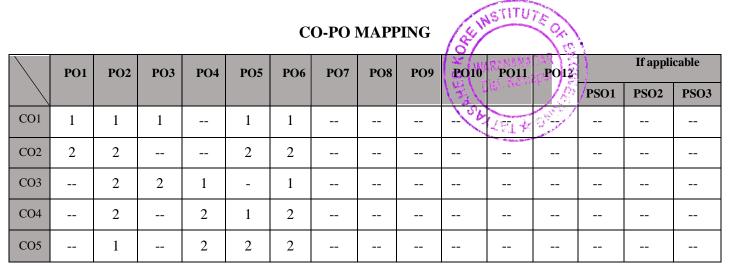
CE602: REINFORCED CONCRETE STRUCTURES

Lectures	:	3 Hrs/Week	Evalu tion Scheme
Credit	:	3	ISE : 40 Marks
Practical's	:	2 Hrs/Week	ESE : 60 Marks

Course Objectives: The objective of the course is to

- 1. To understand the concept of RCC structural design.
- 2. To conceive the elementary, deign of different structural elements.
- 3. To study the concept of torsion.
- 4. To impart knowledge of strength determination of different kinds of R.C. elements using I.S. Code.

	Course Outcomes (CO):										
COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy									
CO1	Understand the basic data (Basic Mechanics, Mathematics, and structural analysis) required for design of concrete structures	Knowledge Understand									
CO2	Understand the design process of concrete structure	Understand									
CO3	Design the Sections subjected to torsion	Understand									
CO4	Understand the application of limit state method for structural element such as footing, column, beam slab, staircase etc.	Understand									
CO5	Design the individual members and hence building.	Apply Evaluate									


Description

Design of reinforced concrete structures is an introductory design course in civil engineering. In this course, basic elements governed by bending, shear, axial forces or combination of them are identified and are considered as building blocks of the whole structure. Different methods of design will be briefly described before introducing the limit states of collapse and serviceability. The design will be done as per IS 456:2000.

		1:	Knowledge of concrete technology and its engineering properties.		
Prerequisi	tes:	es: 2: Fundamental concept of stresses, strains, deflections etc.			
	3	3:	Different types geometrical shapes, centroid, centre of gravit inertia calculations.	ty, moment of UTE	9.
		4.	Units and conversions	WARAMAMAGA	RES
			Section – I	Dist. Kolhapu	IN SOL
			FUNDAMENTALS OF RCC STRUCTURES	0 4 LYL 40	S. Reality

Unit 1	Introduction to R.C.C., Stress-Strain behavior of concrete, Different design philosophies of RCC structures Various Limits States, Characteristic Strength and Characteristic Load, Load, `Factor, Partial Safety Factors, Limit State of Collapse (Flexure) - Analysis and design of singly reinforced beam and design of doubly reinforced beam, Analysis and design of symmetrical T and L beams.	6 Hrs		
	LIMIT STATE OF COLLAPSE (SHEAR AND BOND)			
Unit 2	Shear failure, Types of Shear reinforcement, Design of Shear reinforcement, Bond- types, Factors affecting bond Resistance, Check for development length. (No Numerical on bond).	6 Hrs		
	LIMIT STATE OF COLLAPSE IN TORSION			
Unit 3	Behavior of R.C. rectangular sections subjected to torsion, Design of sections subjected to combined bending and torsion, combined shear and torsion.	6 Hrs		
	Section – II			
	DESIGN OF SLABS			
Unit 4	Cantilever Slab, Simply Supported One way slab Simply Supported Two-way slab with different support conditions as per IS: 456-2000, Design of Simply Supported single flight Dog-legged staircase.	6 Hrs.		
Unit 5	DESIGN OF COLUMNS			
	General aspects, Effective length of column, loads on column, Slenderness ratio for column, Maximum and Minimum eccentricity, Codal provisions, Design of short axially loaded columns, Design of columns subjected	6 Hrs.		
	combined axial load and uni-axial bending using SP-16.			
	combined axial load and uni-axial bending using SP-16. DESIGN OF FOOTING			

CO-PO MAPPING

	Text Books		
1	IS 456-2000, SP-16 & Relevant Special publications of BIS		
	Limit state theory and Design of Reinforced Concrete 8 th Edition – Karve and Shah, Structures publications, Pune		
3	Reinforced Concrete Limit state Design, 7 th Edition A.K.Jain Nem Chand brothers, Roorkee		
4	Fundamentals of Reinforced Concrete –N C Sinha and S K Roy, S. Chand and company Ltd. Ram Nagar, New Delhi		
5	Reinforced Concrete Design - B. C. Punmia Laxmi publications New Delhi		
6	Reinforced Concrete Design-M. L. Gambhir Mc millan India Ltd. New Delhi		
Reference Books			
1	Limit State Design of Reinforced Concrete P.C.Varghese, Prentice Hall, New Delhi		

CE-603: LEGAL ASPECTS AND CONSTRUCTION PRACTICES

Lectures	:	3 Hrs/Week	Evalu tion Scheme
Credit	:	3	ISE : 40 Marks
Practical's	•		ESE : 60 Marks

	Course Objectives: The objective of the course is to			
 To aware the students about Indian Contract and Arbitration act. To provide knowledge about contract administration. To understand working of various excavating, hauling, conveying, and hoisting equipment. To compute cycle time of operations, rating and output of equipment. Course Outcomes (CO): 				
	At the end of successful completion of the course, the student will be	Blooms		
COs	able to	Taxonomy		
CO1	Understand basics of contracts, tenders and e- tendering.	Knowledge Understand		
CO2	Understand the concepts of contract administration and RERA	Understand apply		
CO3	Study the Indian Arbitration Act	Understand		
CO4	Understand the different types of excavating equipment used for construction work	Knowledge		
CO5	Study of different types of Conveying and Hoisting Equipment and their operations	Understand		
CO6	Compute cycle time of operations, rating and output of equipment	Apply and Analyze		

Description

Legal Aspects & Construction Practices deals with important laws in relation with Indian construction industry which helps students to run construction projects efficiently without any litigations. Also it enables students better understanding of various machineries useful for mechanization of construction industry in order to control time and cost of projects

Section – I Contract and Tenders				
	4.	Basics about use of machineries in construction.	a su	
	3:	Basic enforcements and legal things in general activities.	Dist. Kolhapur	
Prerequisites:	2:	Ethical behavioral knowledge.	S	
	1:	Professional etiquettes.	UNSTITUTEO	

Unit 1	Contracts, Types of Contracts, Tender document- invitation of tenders, Tender notice, tenderdocuments, Submission. Scrutiny and acceptance two envelop method. Award of jobs. Various conditions to contracts, Rights and responsibilities of parties of contracts, E- Tendering, Introduction to Non-Conventional Contracts.	6 Hrs								
Unit 2	Contract administration Essentials of legally void and avoidable contracts, contract for engineer and architecture services, contract between owner and contractor, BOT system, Introduction to RERA.	6 Hrs								
	Arbitration									
Unit 3	Introduction to Indian Arbitration Act, Arbitration Agreement, Power and Duties of Arbitration, Different types of arbitration, Qualification of arbitrator.	6 Hrs								
	Section – II									
	Excavating Equipment									
Unit 4	Excavator, Shovels, different types – back hoe, draglines, clamshell, Cycles of operations, Their use in different soil conditions. Output criteria, Rippers, Trenchers, Hauling Equipment: Tractor Dumpers, Bulldozer, Scrapers, Operation cycles times.	6 Hrs.								
	Conveying and Hoisting Equipment									
Unit 5	Different types of conveyors, Power requirement, Damages during operations, Economy of transportations, Cableways and Ropeways, Different types of hosting equipment - derricks and cranes.	6 Hrs.								
	Equipment Management									
Unit 6	Selection of equipment, Advantages and limitations of using machines, planning of equipment – buying Vs hiring, Cost analysis, Economic life and Replacement, Problems of Equipment Management.	6 Hrs.								

\backslash	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P010	Se and a second	PO12	K. N.	If appl	icable
										0 X O	WARAN	8NAGAR	PSOI	PSO2	PSO3
CO1	-	-	-	-	-	1	2	1	-	H	Dist.	10mgpa		-	-
CO2	-	-	-	-	-	1	3	2	-	-	A LA	1.4.08	ere -	-	-
CO3	-	-	-	-	-	1	3	1	-	-	-	-	-	-	-
CO4	-	-	-	-	-	2	1	-	-	-	-	-	-	-	-
CO5	-	-	-	-	-	2	1	-	-	-	-	-	-	-	-
CO6	-	-	-	-	-	2	1	-	-	-	-	-	-	-	-

CO-PO MAPPING

	Text Books
	B. S. Patil, S P Woolhouse, B S Patils Building and Engineering Contracts, 7 th edition, Taylor and Francis Group, Pune (India) May 2019.
2	Dr. R. K. Bangia, Contract I, Eighth Edition
	Chakraborti M, Estimating, Costing, Specification and Valuation in Civil Engineering, 24th edition, M.K. Publishers and Distributors, 2010
	BN Dutta, Estimation & Costing in Civil Engineering by, 28th Edition, UBS Publishers & Distributor Pvt. Ltd, 2016
	Avatar singh, Rajesh Kapoor, Law of Contract & Specific Relief, 13 th edition, Eastern Book Company, 27th February 2021.
	Robert Purifoy, Construction Planning, Equipment and methods, Tata McGraw Hill Publication, 2010.
	Dr. Mahesh Varma, Construction Equipment Planning and Applications, 2 nd Edition, Metropolitan Book Company, 1975
	Roy Chudley and Roger Greene, Construction Technology, 4th Edition, Pearson Prentice Hall, 2005.
	Reference Books
1	Indian Contract Act, https://www.indiacode.nic.in/
2	Dr. Roshan Namavati, Professional Practice: With Elements of Estimating, Valuation, Contract and Arbitration, Lakhani Book Depot, 1 January 2016.
3	F.H. Kellogg , Construction Methods & Machinery, Prentice-Hall Inc. New York, January 1, 1955
4	Philippe Pire and Benoît Legrand, Building Construction Manual, Nov 2013.

CE604 Elective I-ADVANCE FOUNDATION ENGINEERING

Lectures	:	3 Hrs/Week	Evaluation Sch	neme	
Credit	:	3	ISE	:	40 Marks
Tutorials	:	1	ESE	:	60 Marks

Course Objectives: The objective of the course is to									
1. U	1. Understand the importance and basics of foundations in the civil engineering projects								
2. Ev	2. Evaluate the load bearing capacity and settlement of foundations by classical theories.								
3. A	3. Analyze the geotechnical aspects of shallow and deep foundations								
	4. Understand the concepts of the stability of slopes and study various methods of evaluating the stability of slopes.								
5. To	b learn dynamic analysis of foundations for industrial machines								
6. To	study the types & analysis process for earth & water retaining structures								
_	Course Outcomes (CO):								
COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy							
CO1	Use science principles to develop foundation engineering knowledge.	Understand							
CO2	Apply foundation engineering knowledge in the civil engineering projects.	knowledge							
CO3	Calculate bearing capacity theoretically as well as practically.	Analyze							
CO4	Calculate settlement and design shallow and deep foundation	Analyze							
CO5	Design the foundations for Industrial machines under dynamic loadings.	Evaluate							
CO6	Analyze the earth and water retaining structures used for special functions	Analyze							

Description

Soils mechanics refers to the art of applying the mechanics of solids to the soil to predict its deformation behavior and strength. Understanding soil mechanics enables engineers and other professionals to create structures with soil and appreciate its interaction with other structures built on it. This course teaches students basic fundamentals of soil, its properties and applications to practical field. Prime focus on permeability and its calculations, fundamentals of soil compaction, methods and consolidation processes, importance of shear strength in design of structures over soil, stress developed in soil, importance of lateral soil pressure, analysis and of design vertical/abutment walls against soil pressure. This course also helps in applying differences of any structure over it.

	Prerequisites:	1:	Knowledge of soil properties and their analysis	EB K	(v	IARANANAGAI Dist Kolhapu	ŧ)	
		2:	Bridge foundations and their types	F	5	Dian		100
		3:	Different types of earthen structures, stress and resultant calcula	atio	ns	27.41.46	a ser	ø

	Section – I	
	SHALLOW AND RAFT FOUNDATIONS	-
Unit 1	Types & shapes of shallow foundation, minimum depth of foundation, Concept of proportioning of footings (Isolated), calculation of immediate and consolidation settlement, foundation on slopping ground etc. Different shapes, bending moment diagrams & Dimensional analysis of rectangular & Trapezoidal combined footings, Introduction to raft or mat foundation, necessity & types of rafts, Design guidelines for raft foundation, types of raft design, floating foundation & problems associated with floating foundation, Analysis of raft or mat foundation by Rigid method (Conventional method) & Elastic plate method (IS Code method)	6 Hrs
	BEARING CAPACITY AND SOIL STABILIZATION	
Unit 2	Definitions, Modes of failure, Terzaghi's bearing capacity theory, Meyerhof's bearing capacity, I.S. Code method of bearing capacity evaluation & computation (IS 6403), effect of various factors on bearing capacity (Size & Shape, Depth, WT), Bearing capacity evaluation from plate load test, S.P.T. (By I.S. Code method), Static cone penetration test and Menards pressure meter tests with detailed procedure, Introduction to difficult or weak soils, foundations in expansive soils, foundations in soft & compressible soils, Introduction to soil stabilization, methods of stabilization & their applications - mechanical stabilization, cement stabilization by grouting	6 Hrs
	PILE FOUNDATIONS	
Unit 3	Introduction, necessity, advantages and classification of piles, Single pile capacity evaluation by static and dynamic methods for cohesive and cohesion less soil, pile load test. negative skin friction, Group action of files, efficiency of group of piles, Feld's rule, Seiler-Keeney formula, Converse-Labarre formula etc. Calculation of group capacity of pile in cohesive soil, under reamed pile – its application and installation techniques, Concept of negative skin friction and its estimation, settlement in pile foundation, estimation of load on single pile in a group of pile etc. Under reamed piles – equipment, construction, installation techniques and precautions.	6 Hrs
	Section – II	
	MACHINE FOUNDATIONS	
Unit 4	Introduction to machine foundation, types of machine foundations, terms related to dynamic loadings, static and dynamic design criteria etc., Permissible amplitude of vibrations for different types of machines, calculation of probable amplitude, amplitude ratio & maximum amplitude, criteria for design of machine foundations, Design criteria for foundations of reciprocating machines (IS2974-Part-I), design criteria for foundations of	6 Hrs.

	impact type machines (IS2974-Part-II), Vibration Isolation & Its methods, vibration effects on soil etc.	
	SLOPES AND STABILITY ANALYSIS	
Unit 5	Slope classification, slope failure, modes of failure. infinite slope in cohesive and cohesion less soil, Taylor's stability number, Swedish slip method, method of slices and concept of friction circle method to evaluate factor of safety for slope, Concept of land slide, Introduction to sheet piles, types and uses of sheet piles, Analysis & design of cantilever sheet pile walls in cohesive & cohesionless (granular) soils,	6 Hrs
	WELL FOUNDATIONS AND COFFER DAMS	
Unit 6	Element of wells, Types of well foundations, methods of construction, Tilt and shift, Remedial measures, Pneumatic Caissons: Sinking method - Sand Island method, Caisson disease, Common types of cofferdams, Braced cofferdam, Stone columns, Vibroflotation, Preloading technique, Civil engineering application of geo synthetics, Geo textile & geomembrane	6 Hrs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If applicable		icable
													PSO1	PSO2	PSO3
CO1	1	2			1										
CO2	1	2	1	2	1										
CO3	1	2				-									
CO4		2	2	2											
CO5	1	2	2			-					-	-			
CO6	1	1		2	1										

REFERENCES

	Text Books
1	<i>"Soil Mechanics and Foundation Engineering"</i> - B. C. Punmia, Laxmi Publication Sixteenth Edition 2017
	"Soil Mechanics and Foundation Engineering" - K. R. Arrora, Standard Publisher, 14 th Edition, December 2020
3	"Soil Mechanics and Foundation Engineering" - V. N. S. Murthy, Marcell Decker, Jan 2010
4	"Basic and Applied soil Mechanics" - A. S. R. Rao and Gopal Ranjan, New age International

	Publication, January 2016								
5	" <i>Foundation Engineering Handbook- I</i> ", Van Nostrand Reinhold Company, 1975 by Winterkorn H.F. and Fang H. Y								
6	"Foundation Analysis & Design", by Joseph Bowles, McGraw-Hill Education; 5th edition								
7	"Advance Foundation Engineering", by T. G. Sitharam, CRC Press, 1st Edition 2019								
8	"Soil Mechanics & Foundation Engineering", by V. N. S. Murthy, CBS Publishers & Distributors.								
Reference Books									
1	<i>"Soil Mechanics" -</i> Terzaghi and Peak, Jony Willey and Sons, New York, Nov 2016								
2	<i>"Soil Testing"</i> - T. W. Lambe, Willey Eastern Ltd, New Delhi, Dec 2017								
3	Dynamics and Vibrations, A. K. Chopra, Pearson, 24 Sept 2019								

CE604T – ADVANCE FOUNDATION ENGINEERING (T)

- a] Minimum one assignment on each unit with theory and minimum four numerical, (wherever applicable)
- b] Any software-based project OR Foundation site visit with report

CE604 - Elective-I-Optimization Techniques

Lectures	:	3 Hrs/Wee	Evaluation Scheme	e	
Credit	:	3	ISE	:	40 Marks
Tutorials	:	1	ESE	:	: 60 Marks

	Course Objectives: The objective of the course is								
 To provide the students with knowledge on the application of various optimization techniques this can help making decisions for practical problems in industries. To build capabilities in the students for analyzing different situations in the industrial/Business scenario involving limited resources and finding the optima solution within constraints by using advanced optimization tools. 									
	Course Outcomes (CO):								
COs	COs At the end of successful completion of the course, the student will be able to								
CO1	Apply the theory of optimization methods and algorithms to develop and for solving various types of optimization problems	Apply							
CO2	Go in research by applying optimization techniques in problems of Engineering	Apply Evaluate							
CO3	Analyze the real-life systems with limited constraints.	Analyze							
CO4	Understand the process and importance of decision making	Understand							
CO5	Knows importance of Problem-solving methods	Apply Evaluate							
CO6	Depict the systems in a mathematical model form	Apply							

Description

Optimization Techniques refers to the art of applying the various optimization techniques to predict the future performance of various factors like men, material excused in a project. Understanding optimization techniques enables engineers and other professionals to find feasible and optimum solution within constraints by using advanced optimization tools. This course teaches students basic fundamentals of OR and applications to practical field. Students will be able to analyze different situations in the industrial/Business scenario involving limited resources.

	1	Knowledge of different types of management techniques		NSTITUTE	
Prerequisites:	2	Knowledge of different types of mathematical techniques	00		
				I MARANGNAUMA	1.00

Dist. Kolhal

1 \$

	3 Units and conversions								
	Section – I								
	Linear programming								
	Introduction: Importance of optimization techniques. Linear programming: Formulation, Graphical solution, Simplex method, Big M Method	6 Hrs							
	Duality, Sensitivity analysis, Transportation problems								
Unit 2	Unit 2 Concept of Duality, Sensitivity analysis, Transportation Problem: I.B.F.S. Transportation Problem: Optimization								
	NLPP & Assignment Problems								
	Introduction to assignment problem, Solution of assignment problem, Introduction to N.L.P	6 Hrs							
	Section – II								
	Decision theory								
Unit 4	Introduction, decision tree, Game theory.	6 Hrs							
	Inventory models								
Unit 5	Fundamentals of Inventory, deterministic model, probabilistic model, E.O.Q.	6 Hrs							
	Queuing theory								
	Queuing theory. Simulation applications, Forecasting techniques	6 Hrs.							

\backslash	PO1	PO2	PO3	PO4	05	PO6	PO7	PO8	PO9	PO10	PO11	P 12		If appl	icable
													PSO1	PSO2	PSO3
CO1	1	1	1		1	1									
CO2	2	2			2	2									
CO3		2	2	1	-	1									
CO4		2		2	1	2								TIT	
CO5		1		2	2	2							14	19100	E OK
CO6	1	1	2	2	1								N NO	ARAMANI	GAR S
													SCHIE	Dist. Non	

REFERENCES

	Text Books
1	S. S. Rao, Engineering Optimization: Theory and Practice, Wiley & Sons, New Jersey, 2009.
2	H. A. Taha, Operations Research, Pearson Education India,2009.
3	F. H. Hillier and G. J. Liberman, Introduction to Operations Research, Tata McGraw-Hill, 2010.
4	A. Ravindran, D. T. Phillips, and J. J. Solberg, Operations Research: Principles and Practice, John Wiley and Sons, 1987.
	Reference Books
	W. L. Winston, Operations Research: Applications and Algorithm, 4th Edition, Cengage Learning, 1994.
2	K. Deb, Optimization for Engineering Design, Prentice Hall, 2013.
3	M. C. Joshi and K. M. Moudgalay, Optimization: Theory and Practice, Narosa, 2004.

CE604T Elective I – Optimization Techniques

Credit-1

a] Minimum one assignment on each unit with theory and minimum four numerical, (wherever applicable)

CE605 – ENERGY AND ENVIRONMENT

Lectures	:	3 Hrs/Week	Evaluation Scheme				
Credit	:	3	ISE	:	40 Marks		
Tutorials	:		ESE	:	60 Marks		
	Course C	bjectives: The objective	of the course is to				

- 1. To understand various sources of energy with respect to quantity and use
- 2. To describe and design the various Building and industrial energy efficient units.
- 3. To learn the special energy requirements and its methods of applications
- 4. To learn various sources of Air pollution, Noise Pollution and Solid waste ts treatment and safe disposal.
- 5. Measurement of pollution of Air, Noise and solid waste.

	Course Outcomes (CO):							
COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy						
CO1	Describe the various sources of energy with respect to quantity.	Knowledge Understand						
CO2	Describe and design the various energy efficient units.	Understand						
CO3	Illustrate the special energy requirement and its use in residential and industrial buildings	Understand						
CO4	Know the various sources of Air pollution, Noise Pollution and Solid waste its treatment and safe disposal.	Understand						
CO5	Measurement of strength of Air pollutants, sound pollution and solid waste	Apply Evaluate						

Description:

Energy and Environment is focused on analysing and understanding the qual ty and quantity of Energy required for various types of buildings and its audits. Moreover, the awareness of Air pollution, Noise Pollution and Solid waste generates its pollution intensity, limits laws, and various methods of testing and reduction of pollution. This course will enhance the knowledge about green energy and its applications. The future of globe to reduce use of non-renewable energy and application of green energy is achieved through this course. The environmental pollution impact can be controlled through various techniques and their implementation.

	1	Energy requirements for human activities
Prerequisites	2	Effects of Air pollution and noise pollution on Human and his environment
	3	Solid wastes and its nuisance
	4	MPCB, CPCB and its standards
		Wellson Walter

	Section – I					
	Air Pollution					
Unit 1	Definition, Sources and classification of pollutants, Effects. Measurement of Air Pollutants, Control of industrial air pollution- Settling Chamber, Bag filter, Cyclone separator, Scrubbers, Electrostatic precipitators. Air quality standards	7 Hrs				
	Noise Pollution					
Unit 2	Noise characteristics and measurements, Levels of noise and standards, control.	4 Hrs				
	Solid Waste Management					
Unit 3	Solid wastes Definition, Types, Sources, Characteristics, Functional outlines-storage, Collection, Processing techniques, Methods of treatment of solid waste-Composting, Incineration, Pyrolysis and Sanitary land filling.					
	Section – II					
	Green Energy and Environment:					
Unit 4	Introduction to Green Buildings, Aspects of green energy and the environment, such as bio-fuel and bio-energy, energy storage and networks, Catalysis of sustainable development	6 Hrs				
	Clean Energy and its uses					
Unit 5	Reduced air pollution and greenhouse gas emissions, Lower consumer energy bills, Enhanced state and local economic development and job creation, Improved energy system reliability and security. Energy audits and green building rating	5 Hrs				
	Environmental Problems and Energy:					
Unit 6	Different types of Energy – Conventional and non-conventional, The environmental problems directly related to energy production and consumption include air pollution, climate change, water pollution, thermal pollution, and solid waste disposal. The emission of air pollutants	7 Hrs				
	from fossil fuel combustion is the major cause of urban air pollution.					

						CO	- PO I	Mappi	ng						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	I	f applical	ole
													PSO 1	PSO 2	PSO 3
CO 1	1	2	-	-	1							-			
CO 2	1	2	1	2	-							-			
CO 3	1	2	-	-	-							-			
CO 4	-	-	2	2	2							-			
CO 5	1	2	2	-	-							-		TITUS	
CO 6	1	2	-	-	1							-	RE INS		01:
						R	EFERH	ENCE	S				WAR	ananaga It. Koihap	

	ALT ROM								
	Text Books								
1	Sewage Disposal and Air Pollution Engineering - Garg S.K., [Khanna Publishers], 39th edition								
2	Solid Waste Management in Developing countries - Bhide A.D. and Sundersen B.B.[Indian								
	National Scientific Documentation Centre, New Delhi]								
3	Air Pollution- Rao M.N. and Rao H.V.N. [Tata Mcgraw Hill]								
4	Environmental Noise Pollution: Noise Mapping, Public Health, and Policy Paperback – Import								
	by Enda Murphy (Author), Eoin A King (Author)								
	Reference Books								
	Manual on sewerage & sewage Treatment published by Ministry of Urban Development Govt.								
1	of India Msy-2000. 35 PDOP-4-59-85-97, Ministry of Urban development								
2	Manual on Municipal Solid Waste Management- Ministry of Urban Development Govt. of India								

CE601P – DESIGN OF STEEL STRUCTURES (Lab)

Practical's: 2 hrs / week Credits: 1

Examination Scheme:

Course Objectives: The objective of the course is to

1. To understand the behavior of elements of steel structure.

2. To understand the design concept of steel structure.

3. To have sense of design of professional ethics

	Course Outcomes:							
COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy						
CO1	Analyze and design different types of welded and bolted connections by using necessary elements for analyzing steel structures.	Remember						
CO2	Analyze and design axially loaded tension member along with its end connections.	Apply, Evaluate						
CO3	List and describe essential elements necessary to analyze and design of compression member.	Apply, Evaluate						
CO4	Analyze and design axially and eccentrically loaded columns along with its different types of column bases.	Apply, Evaluate						
CO5	Analyze and design laterally supported and unsupported beams with their end connections.	Apply						
CO6	Calculate forces acting on gantry girder and its design as laterally unsupported beam.	Remember, Apply						

TUTORIALS

Term work shall comprise of at least one assignment on each unit with minimum 5 numerical

Sr. No.	Practical/ Experiment/Tutorial Topic	Hrs.	Bloom's Taxonomy
1	Design of bolted Connections	2	Remember
2	Design of Welded Connections	2	Apply, Evaluate
3	Design of Tension Member	2	Apply, Evaluate
4	Design of Compression Member	2	Apply, Evaluate
5	Design of Column & Footing	2	Apply

ISA: 50 Marks

6	Design of Footing	2	Remember, Apply
7	Design of Beam	2	Apply, Evaluate
8	Design of Gantry Girder	2	Apply, Evaluate

\backslash	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		If appli	cable
													PSO1	PSO2	PSO3
CO1	1	2			1	-	-		-						
CO2	1	2	1	2											
CO3	1	2													
CO4			2	2	2										
CO5	1	2	2												
CO6	1	2			1										

REFERENCES

	Text Books
1	"Design of Steel Structures (By Limit State Method As Per Is 800—2007" – S. S. Bhavikatti, I K International Publishing House, New Delhi,2009
2	Limit State Design of Steel Structures: V. L. Shah and Veena Gore, Stuctures Publication, Pune, 2009
3	IS 800:2007-BIS
4	"Handbook on steel-SP6" BIS
5	"IS – 875, Part - III" -BIS.
	Reference Books
1	Design of Steel Structures, by Dr. N. Subramanian, Oxford University Press, New Delhi,2008
2	Limit State Design of Steel Structures: S.K. Duggal, Tata Mc-Graw Hill India Publishing House,2010
3	Design of Steel Structures: K.S. Sairam, Pearson Education India, 2010
4	Design and Analysis of Steel Structures: Vajrani V. N., Ratwani M. M. and Mehra H., Oscar Publications, 1988

CE602P - REINFORCED CONCRETE STRUCTURES

Practical's: 2 hrs / week

1

Credits:

Examination Scheme:

ISA: 25 Marks POE: 50 Marks

Course Objectives: The objective of the course is to

- 1. To introduces different types of stresses, strains, analysis and design of singly reinforced beams, L and T beams.
- 2. To calculate the shear reinforcement in beams.
- 3. To understand the concept of combined bending and torsion.
- 4. To analysis and design of different types of slabs.
- 5. To understand the design of column.
- 6. To calculate the design of footings.

	Course Outcomes (CO):	
COs	At the end of successful completion of the practical's the student will be	Blooms Taxonomy
CO1	Able to understand basic properties of RCC structures and solve singly, L and T beams design problems.	Analyze
CO2	Analyze and design shear reinforcement in beams.	Analyze
CO3	Understand and able to evaluate combined bending and torsion.	Understand Analyze
CO4	Understand the design of different types of slabs.	Understand Analyze
CO5	Analyze and design of column.	Analyze
CO6	Calculate the design of footings.	Analyze

PRACTICALS

A] At least one assignment on each unit

Sr. No.	Assignment	Hr s.	Bloom's Taxonomy
01	Assignment No. 1: FUNDAMENTALS OF RCC STRUCTURES	2	Knowledge Analyze
02	Assignment No. 2: LIMIT STATE OF COLLAPSE (SHEAR AND BOND)	2	Knowledge Analyze
03	Assignment No. 3: LIMIT STATE OF COLLAPSE IN TORSION	2	Knowledge, Analyze
04	Assignment No. 4: DESIGN OF SLABS	2	Knowledge, Analyze
05	Assignment No. 5: DESIGN OF COLUMNS	2	Knowledge
06	Assignment No. 6: DESIGN OF FOOTING	2	Knowledge, Analyze

B] One assignment on each unit with minimum five numerical in each assignment

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		If appli	icable
													PSO1	PSO2	PSO3
CO1	2	1	1	1											
CO2	2	1	2	2		-									
CO3		2	2	-											
CO4	1	2		1											
CO5	1	2													-
CO6		2	1												

CO-PO MAPPING

CE605P - ENERGY AND ENVIRONMENT (Lab)

Practical's: 2 hrs / week Credits: 1 Examination Scheme: ISA: 50 Marks

Course Objectives: The objective of the course is to

- 1) To familiarize the students with the quality and quantity of Air, sound and solid waste
- 2) To familiarize the students Concept and Design of green Building
- 3) To understand Location and development of sound and its measurement

	Course Outcomes (CO):								
COs	COs At the end of successful completion of the course the student will be able to								
CO1	Determine different properties of Air Pollutants, Sound, and solid waste	Understan d Analyze							
CO2	Demonstrate Quantity and methods of Air Quality Measurement	Understand							
CO3	Measure the intensity of sound with respect to location time and activity	Analyze							
CO4	Green Building and its development	Analyze							
CO5	Different forms and measurement of Energy	Understan d Analyze							

PRACTICALS

Sr. No.	Practical/ Experiment/Tutorial Topic	Hrs.	Bloom's Taxonomy
1	Visit to Residential, Commercial and industrial	2	Analyze
	Buildings for its Water, wastewater, Electricity		
	requirements-use optimization and its study		
2	Measurement of Noise levels at various location at	2	Analyze
	and around – Traffic Signals, Hospitals, Schools,		
	Industries etc		
3	Problems on Residential, Commercial and industrial	2	Analyze
5	Buildings for its energy uses Water, Electricity and	-	
	resources budgeting.		
4	Planning for optimal use of natural energy and its	2	Analyze
	application.		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	applicab	ole
													PSO1	PSO2	PSO3
CO1	2	1	1	1											
CO2	2	1	2	2											
CO3		2	2												
CO4		2													

REFERENCES

	Text Books
1	Sewage Disposal and Air Pollution Engineering - Garg S.K., [Khanna Publishers], 39 th edition
2	Solid Waste Management in Developing countries - Bhide A.D. and Sundersen B.B. [Indian National Scientific Documentation Centre, New Delhi]
3	Air Pollution- Rao M.N. and Rao H.V.N. [Tata McGrawHill]
4	Environmental Noise Pollution: Noise Mapping, Public Health, and Policy Paperback – Import by Enda Murphy (Author), Eoin A King (Author)
	Reference Books
1	Manual on sewerage & sewage Treatment published by Ministry of Urban Development Govt. of India Msy-2000. 35 PDOP-4-59-85-97, Ministry of Urban development
2	Manual on Municipal Solid Waste Management- Ministry of Urban Development Govt. of India

CE606P – BUILDING MODELLING & DESIGN

Practical's: 2 hrs / week

Examination

Scheme:

Credits: 1

ISA: 50 Marks POE: 25 Marks

	Course Objectives: The objective of the course is to								
4)	4) To familiarize the students with the quality and quantity of Air, sound and solid waste								
5)	To familiarize the students Concept and Design of green Building								
6)	To understand Location and development of sound and its measurement								
	Course Outcomes (CO):								
<u> </u>	At the end of successful completion of the course the student will	Blooms							
COs	be able to	Taxonom							
		У							
CO1	Student should have a good working knowledge of SketchUp's 2D &	Understan							
	3D drawing tools as well as editing tools	d Analyze							
CO2	Students to know how to create a group or component, and how to paint	Understand							
002	a face with colors or materials,	Analyze							
CO3	Students to know how to use texture positioning, Photo Match, scenes,	Understand							
	layers, or styles								
CO4	Using this software study student will present building in all ways.	Analyze							

PRACTICALS

Sr. No.	Practical/ Experiment/Tutorial Topic	Hrs.	Bloom's Taxonomy Analyze Analyze		
1	Introduction Google SketchUp , Establishing the Modeling Mind-Set, Getting Off to a Running Start	2	Analyze		
2	Modeling in SketchUp, Develop Buildings, Falling in Love with Components Going Beyond Buildings, Keeping Your Model Organized	2	Analyze		
3	Modeling with Photographs, Viewing Your Model in Different Ways, Working with Styles and Shadows	2	Analyze		
4	Working with Google Earth and the 3D Warehouse, Printing Your Work, Exporting Images and Animations, Creating Presentation Documents with LayOut.application.	2	Analyze		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If applicable		
													PSO1	PSO2	PSO3
CO1	2	1	1	1											-
CO2	2	1	2	2											-
CO3		2	2	1											-
CO4	1	2		1											

REFERENCES

	Text Books
1	Aidan Chopra - Google SketchUp 7 For Dummies-For Dummies (2009) [Wiley Publishing]
2	SketchUp website - online videos and tutorials (go to http://sketchup.google.com/training).
	Reference Books
1	O'Reilly's Google SketchUp: The Missing Manual by Chris Grover.
2	SketchUp website - online videos and tutorials

APPROVED BY

Member Secertay **Board of Studies**

BA

Chairman Board of Studies Chairman Board of Studies Civil, ENGG, DEPT. Tatyasaheb Koro institute of

Academic Dean T.K.I.E.T.Warananagar

WELLAW

PRINCIPAL T.K.I.E.T.Warananagar

