

An Autonomous Institute Department of Civil Engineering

* VISION

To become an academy of excellence in technical education and human resource development.

***** MISSION

- To develop engineering graduates of high repute with professional ethics.
- To excel in academics and research through innovative techniques.
- To facilitate the employability, entrepreneurship along with social responsibility.
- To collaborate with industries and institutes of national recognition.
- To inculcate lifelong learning and respect for the environment.

*** QUALITY POLICY**

To promote excellence in academic and training activities by inspiring students for becoming competent professionals to cater industrial and social needs.

An Autonomous Institute Department of Civil Engineering

PROGRAM EDUCATIONAL OBJECTIVES

Graduates will be able to,

- 1. To Impart quality technical education and graduate the students for employment in civil engineering and related professions.
- 2. To provide students with solid foundation in mathematical and analytical subjects so as to solve civil engineering problems and also to pursue higher studies.
- 3. To develop the ability among the students to organize the data, synthesize data and technical concepts which will helps them to solve problems relevant to the general practice of various civil engineering disciplines.
- 4. To inculcate with the student the expertise of using computer tools to solve problems, for presentations works, acquaint them with professional level software for planning, analysis, and design purpose
- 5. To provide an experience in surveying work, site investigations, familiarity with the real issues of civil engineering including ethics, economy, management, and emerging technologies
- 6. To provide an opportunity for the students to work in team by organizing various curricular and professional activities resulting in the improvement of technical and soft skills.

PROGRAM OUTCOMES

After completion of the Program, graduates will,

- 1. Demonstrate knowledge in mathematics, basic sciences, & civil engineering
- 2. Identify, formulate, and solve civil engineering problems
- 3. Prepare structural design such that fulfills design specification, durability, economy, & safety.
- 4. Design and conduct experiment, analyze data & also interpret result to provide conclusion.
- 5. Use appropriate engineering techniques and software tools to analyze civil engineering problems.
- 6. Apply civil engineering knowledge for construction site in all respect like planning, execution, and supervision.
- 7. Sensitive towards ethical, societal, and environmental issue along with professional work
- 8. Exhibit understanding of professional & ethical responsibility.
- 9. Ability to function as a leader of multidisciplinary team.
- 10. Communicate effectively in both verbal & written form
- 11. Develop engineering research ability & project management skill.
- 12. Possess confidence for self-education & ability for lifelong learning.

PROGRAM SPECIFIC OUTCOMES

- 1. Plan and Design, Maintain and execute smart infrastructural projects.
- 2. Assess and analyze environmental impact of civil engineering projects and take corrective action for sustainable development.
- 3. Use leadership and communication abilities to optimally integrate the 4Ms Viz.-Men, Money, Material and Machine

SWVSM'S

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar An Autonomous Institute

Abbreviations

Sr. No.	Acronym	Definition
1	ISE	In-Semester Examination
2	ISE-I	In-Semester Examination-I
3	ISE-II	In-Semester Examination-II
4	ESE	End Semester Examination
5	ISA	In-Semester Assessment (Term Work)
6	L	Lecture
7	Т	Tutorial
8	P	Practical
9	СН	Contact Hours
10	С	Credit

Course/ Subject Categories

Sr. No.	Acronym	Definition
1	BSC	Basic Science Course
2	HSC	Humanity Science Course
3	ESC	Engineering Science Course
4	PCC	Professional Core Course
5	OEC	Open Elective Course
6	MC	Mandatory Course
7	PEC	Professional Elective Course
8	PW	Project Work (Mini and Major Project)
9	II	Industrial Internship

Course/ Subject Code

С	C E		0	1
Branc	ch Code	Semester	Course Number	

Course Term work and POE Code

C	E	3	0	1	T/P/A
Bran	ch Code	Semester	Course	Number	T- Term work P- POE A- Audit Course

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar An Autonomous Institute

Semester wise Credit Distribution for B.Tech. Civil Engineering Program

Sem.	I	II	III	IV	V	VI	VII	VIII	Total
Credits	21	21	21	21	21	21	21	21	168

Honor Program in under Civil Engineering

Sem.	V	VI	VII	VIII	Total
Credits	5	5	5	5	20

Second Year B. Tech. in Civil Engineering

Proposed Structure and Syllabus Under Autonomy as per the NEP Policy 2020

Second Year B. Tech. (Civil Engineering)

Semester-III

(To be implemented from 2024 - 25) Credit Scheme as per NEP Policy

				Credit Scheme a									
			S. Y. B	. Tech. Civil I	Engi	nee	ring	Sen	n -II				
Sr.	Cate	Sub	Course			eachi chen		_		Examiı	nation &		ation
No.	gory	Category	Code	Name of Course	L	T	P	С	СН	Comp	Mar	Min fo	
										onent	ks	Passin	ıg
1		PCC	23UGPCC -CE301	Strength of Materials	3*			2	3	ESE ISE	60 40	24 16	40
2		PCC	23UGPCC -CE302	Surveying	3*			2	3	ESE ISE	60 40	24 16	40
3	Progra m	PCC	23UGPCC -CE303	Fluid Mechanics	3*			2	3	ESE ISE	60	24 16	40
4	e Cours	PCC	23UGPCC	Engg. Mathematics for	2			2	2	ESE	60	24	40
		100	-CE304	Civil Engineering						ISE	40	16	10
5		PCC	23UGPCC -CE305	Building Construction and	3*			2	3	ESE	60	24	40
			-CE305	Drawing						ISE	40	16	
6	Multi- discipl inary Cours es	MDM-1	23UGMD M1- CE306T	Construction Materials	1	1		2	2	ISA	50	20	20
7	Human ities Social Scienc e	Entrepreneurshi p/Economics/ Management Courses	23UGEEC 1-CE307	Professional Leadership & Interpersonal Skills	2			2	2	ISA	25	10	10
8	and Manag ement	Value Education Course (VEC)	23UGVEC 1-CE308	Personal Values and Ethics	1	1		2	2	ISA	25	10	10
9	Experi ential Learni	Comm. Engg. Project	23UGFP-	Field Project			4	1 2	4	ISA	25	10	20
	ng Course s	(CEP)/Field Project (FP)	CE302 LP	(Surveying)			-	_		POE	25	10	20
10		PCC	23UGPCC	Strength of			2	1	2	ISA	25	10	20
	Progra		-CE301 LP	Materials			_			POE	25	10	
11	mme	PCC	23UGPCC -CE303 LP	Fluid Mechanics			2	1	2	ISA	25 25	10	20
	Cours e			Building						POE ISA	50	20	20
12		PCC	23UGPCC -CE305 L	Construction and Drawing			2	1	2	1571			
13	Audit Cours e	A	23UGPCC -CE309 A	Audit Course – III (General Proficiency as per the need of Industry depending on Program & no repetition from the course)									
					18	2	10	21	30		800	320	320

Second Year B. Tech. (Civil Engineering)

Semester-IV

(To be implemented from 2024 - 25) Credit Scheme as per NEP Policy

	S. Y. B. Tech. Civil Engineering Sem - IV												
C		Sub	Course			eachi chen	_				Examina Valuation		
Sr. No.	Category	Categor y	Course Code	Name of Course	L	T	P	C	C H	Com pone nt	Mark s	Min for Passing	
1		PCC	23UGPCC- CE401	Mechanics of Structures	3*			2	3	ESE ISE	60 40	24 16	40
2	D	PCC	23UGPCC- CE402	Advanced Surveying	3*			1	3	ESE ISE	60 40	24 16	40
3	Program Course	PCC	23UGPCC- CE403	Concrete Technology	2			2	2	ESE ISE	60 40	24 16	40
4		PCC	23UGPCC- CE404	Hydraulics	2			1	2	ESE ISE	60	24	40
5	Multidiscipl	MDM-2	23UGMDM2- CE405T	Disaster Management	1	1		2	2	ISA	50	20	20
6	inary Courses	OE - I	23UGOE1- CE406	Energy & Environment	2			2	2	ESE ISE	60 40	24 16	40
7	Skill Courses	Vocational and Skill Enhanceme nt Course (VSEC)	23UGVSEC- CE407 L	Computer Aided Design and Drawing	1		2	2	3	ISA	25	10	10
		Ability Enhanceme nt Course	23UGAEC1- CE408 L	Modern Indian Language	1		2	2	3	ISA	25	10	10
8	Humanities Social Science and Management	Entreprene urship/Econ omics/ Manageme nt Courses	23UGEEC2- CE409	Human Resource Management	2			2	2	ISA	25	10	10
9	Wanagement	Value Education Course (VEC)	23UGVEC2- CE410	Ethics and Moral Philosophy	2			2	2	ISA	25	10	10
10		PCC	23UGPCC- CE402 LP	Advanced Surveying			2	1	2	ISA POE	25 25	10 10	20
11	Program Course	PCC	23UGPCC- CE403 LP	Concrete Technology			2	1	2	ISA POE	25 25	10 10	20
12	PCC		23UGPCC- CE404 LP	Hydraulics			2	1	2	ISA POE	25 25	10 10	20
13	Audit Course	A	23UGPCC- CE411 A	Audit Course – IV (Environmental Studies)									
		N.A. T.		ation thousand had	19	1	10	21	30	d ICE	800	320	320

Note: In theory examination, there will be separate passing of ESE and ISE.

^{*}Indicates the extra lectures provided for the course

Humanities Social Science and Management (HSSM) Course Basket Sem -III Entrepreneurship / Economics Course (EEC-I)										
Category Sub Category Course Code Name of Course										
Humanities	EEC - I		Leadership & Management							
Social Science		23UGEEC1-CE307	Entrepreneurship							
		25UGEECT-CESU/	Professional Leadership &							
and Management			Interpersonal Skills							
	Value E	ducation Course (VEC-I)							
Category	Sub Category	Course Code	Name of Course							
Humanities			Personal Values and Ethics							
Social Science	VEC-I	23UGVEC1-CE308	Respect and Empathy							
and Management			Leadership and Ethical Decision Making							

Humanities Social Science and Management (HSSM) Course Basket Sem -IV										
Ability Enhancement Course (AEC-I)										
Category	Sub Category	Course Code	Name of Course							
Humanities			Professional Communication Skills							
Social Science	AEC -I	23UGAEC1-CE408	Critical Thinking and Problem Solving							
		L]	Modern Indian Language							
and Management			(Marathi, Hindi, Sanskrit, Kanada)							
	Entrepreneursh	ip / Economics Co	ourse (EEC-II)							
Category	Sub Category	Course Code	Name of Course							
Humanities			Human Resource Management							
Social Science	EEC - II	23UGEEC2-CE409	Project Management							
and Management			Plumbing and Electrical Skill							
	Value Ed	lucation Course (V	VEC-II)							
Category	Sub Category	Course Code	Name of Course							
Humanities			Ethics and Moral Philosophy							
Social Science	VEC-II	23UGVEC2-CE410	Social Responsibility and Citizenship							
and Management			Values in Education Policies and Practice							

Multidisciplinary Courses (MDM) Course Basket Sem -IV									
Open Elective – OE - I									
Category	Sub Category	Course Code	Name of Course						
Multidisciplinary	On an Election OF	221/2051 65406	Energy and Environment						
Courses	Open Elective - OE	23UGOE1-CE406	Engineering Geology						

Third Year B. Tech. in Civil Engineering Proposed Structure and Syllabus Under Autonomy as per the NEP Policy 2020

Third Year B. Tech. (Civil Engineering)

Semester-V

(To be implemented from 2025 - 26) Credit Scheme as per <u>NEP Policy</u>

			T. Y. B.	Tech. Civil	Eng	gine	eri	ng S	Sem	ı -V			
Sr. No	Catego	Sub Categ	Course	Name of Course		eachi chem	U			Exami	nation Sch	& Eval	uation
•	ry	ory	Code	Name of Course	L	Т	P	С	C H	Com pone ks Min for Passing			
1		PCC	23UGPCC- CE501	Soil Mechanics	3			3	3	ESE ISE	60 40	24 16	40
2		PCC	23UGPCC- CE502	Theory of Structure	3			3	3	ESE ISE	60	24 16	40
3	Program Course	PCC	23UGPCC- CE503	Water Resource Engineering	3*			2	3	ESE	60	24	40
4		PEC-	23UGPEC1 - CE504	Environmental Engineering	3			3	3	ESE ISE	60	24	40
5	Multidisci plinary Courses	MDM -3	23UGMDM 3-CE505	Solid Waste Management	3	1		4	4	ESE	60	24	40
6	Multidisci plinary Courses	OE-II	23UGOE2- CE506	Optimization Technique	2			1	2	ISE ESE ISE	40 60 40	16 24 16	40
7		PCC	23UGPCC- CE501 LP	Soil Mechanics			2	1	2	ISA POE	25 25	10	20
8	Program	PCC	23UGPCC- CE503 LP	Water Resource Engg.			2	1	2	ISA POE	25 25	10	20
9	Course	PCC	23UGPCC- CE 504 LP	Environmental Engineering			2	1	2	ISA	25	10	20
10		PCC	23UGPCC- CE502 L	Theory of Structure			2	1	2	POE ISA	25 25	10	10
11	Multidisci plinary Courses	OE-II	23UGOE2- CE506 L	Optimization Technique			2	1	2	ISA	25	10	10
					17	1	10	21	28		800	320	320

Note: In theory examination, there will be separate passing of ESE and ISE. $\begin{tabular}{ll} \hline \end{tabular}$

*Indicates the extra lectures provided for the course

Third Year B. Tech. (Civil Engineering)

Semester-VI

(To be implemented from 2025 - 26) Credit Scheme as per NEP Policy

T. Y. B. Tech. Civil Engineering Sem -VI

						eachi chen	_	8		Exami	nation &		tion
Sr. No.	Catego ry	Sub Category	Course Code	Name of Course							Schen		
110.	1 9	Category	Code	Course	L	T	P	С	СН	Comp onent	Marks	Min for Passing	
1		PCC	23UGPCC -CE601	Reinforced Concrete Structures	3*			2	3	ESE ISE	60 40	24 16	40
2		PCC	23UGPCC -CE602	Building Planning & Design	3			2	3	ESE ISE	60 40	24 16	40
3	Program Course	PCC	23UGPCC -CE603	Design of Steel Structures	3*			3	3	ESE ISE	60 40	24 16	40
4		PEC-2	23UGPEC 2- CE604	Advance Foundation Engg.	3			3	3	ESE ISE	60	24 16	40
5		PEC-3	23UGPEC 3- CE605	Construction Mang.	3*			2	3	ESE ISE	60 40	24 16	40
6	Multidisc iplinary Courses	MDM-4	23UGMD M4 - CE606L	Town Planning	2			2	2	ISA	50	20	20
7	Skill Courses	Vocational and Skill Enhanceme nt Course (VSEC)	23UGVSE C2-CE607	Civil Software	1		2	2	3	ISA	50	20	20
8		PCC	23UGPCC -CE601 LP	Reinforced Concrete			2	1	2	ISA	25 25	10 10	20
9		PCC	23UGPCC -CE608 LP	Structures Structural Design &			2	1	2	POE ISA	25 25 25	10	20
10	Program	DEC 2	23UGPEC	Drawing-I Advance			2	1		POE ISA	25	10	20
10	Course	PEC-2	2-CE604 LP	Foundation Engg.			2	1	2	POE	25	10	20
11		PCC	23UGPCC -CE602 L	Building Planning & Design			2	1	2	ISA	25	10	
12		PEC-3	23UGPEC 3-CE605 L	Constructio n Mangt.			2	1	2	ISA	25	10	250
					18	0	12	21	30	0	800	320	320

Note: In theory examination, there will be separate passing of ESE and ISE.

^{*}Indicates the extra lectures provided for the course

Multidisciplinary Courses (MDM) Course Basket Sem -V									
Open Elective – OE - II									
Category	Sub Category	Course Code	Name of Course						
Multidisciplinary			Optimization Techniques						
Courses	Open Elective - OE	23UGOE2-CE506	Maintenance, Retrofitting, Rehabilitation						
Courses			of Structure						

Skill Courses (SC) Course Basket Sem -VI Vocational and Skill Enhancement Course (VSEC)									
Category	Sub Category	Course Code	Name of Course						
	Vocational and		Civil Software Course – STAD Pro						
Skill Courses	Skill Enhancement	23UGVSEC-CE607	Civil Software Course – ETABS						
	Course (VSEC)		ACE – Aptitude &Competitive Examinations						

Program Electives Courses (PEC) Basket

	PEC - 1									
Category	Sub Category	Course Code	Name of Course							
Program	PEC - 1	23UGPEC1-CE504	Environmental Engineering							
Course	PEC-1	23UGFECT-CE304	Industrial Waste Treatment							

Program Electives Courses (PEC) Basket

	PEC - 2										
Category	Sub Category	Course Code	Name of Course								
Program	PEC - 2	23UGPEC2-CE604	Advance Foundation Engineering								
Course	PEC - 2	23UUFEC2-CE0U4	Advance Design of Concrete Structures								

Program Electives Courses (PEC) Basket

	PEC - 3									
Category	Sub Category	Course Code	Name of Course							
Program	PEC - 3	23UGPEC3-CE605	Construction Management							
Course	PEC - 3	23UGFEC3-CE003	Advanced Construction Techniques							

Final Year B. Tech. in Civil Engineering

Proposed Structure and Syllabus Under Autonomy as per the NEP Policy 2020

Final Year B. Tech. (Civil Engineering)

Semester-VII

(To be implemented from 2026 - 27) Credit Scheme as per NEP Policy

Final Year B. Tech. Civil Engineering Sem -VII Teaching Scheme **Examination & Evaluation** Sub Course Name of Scheme Sr. Category Categ Code Course C No L T \mathbf{C} ory P Н Min for Comp Marks onent **Passing** Design of **ESE** 60 24 23UGPC **PCC** Concrete 3 2 3 40 1 --C-CE701 **ISE** 40 16 Structures **ESE** 60 24 23UGPC **PCC SDFRS** 3* 3 2 --2 40 --C-CE702 **ISE** 40 16 Program 23UGPE **ESE** 24 60 Course Earthquake 3* 3 PEC-4 C4-2 40 3 Engineering **ISE** 40 16 CE703 23UGPE Quantity **ESE** 60 24 2* 4 PEC-5 C5-Surveying 2 2 40 **ISE** 40 CE704 16 and Valuation **Smart Cities** Multidisci 23UGMD MDMand 5 plinary M5-CE 2 2 2 ISA 50 20 20 ----Sustainable 5 Courses 705L Development Experienti **ESE** 60 24 23UGEL Research al **ELC** 3 3 6 --3 40 Learning C-CE706 Methodology **ISE** 40 16 Courses 23UGPC Design of 7 **PCC** C-CE701 Concrete 1 1 1 ISA 25 10 10 Structures 23UGPE Earthquake 8 PEC-4 C4-CE 1 1 1 **ISA** 25 10 10 --Engineering 703 L Program Course Quantity **ISA** 25 10 23UGPE PEC-5 Surveying 2 9 2 1 20 C 704 LP and Valuation 25 10 POE 23UGPC Structural 25 10 **ISA PCC** 2 10 C-CE 707 Design and 2 1 20 ----25 10 LP Drawing-II POE Experienti **ISA** 50 20 20 23UGPC al PCC C-CE708 8 11 **Project** 4 4 Learning POE 50 20 20 LP Courses 23UGPC Audit Course Audit – Field 12 Course -C-CE A VII 709A Training 16 2 8 21 **30** 0 800 320 320

Note: In theory examination, there will be separate passing of ESE and ISE.

*Indicates the extra lectures provided for the course

Final Year B. Tech. (Civil Engineering)

Semester-VIII

(To be implemented from 2026 - 27) Credit Scheme as per NEP Policy

Final Year B. Tech. Civil Engineering Sem -VIII Teaching Scheme **Examination & Evaluation Scheme** Sub Course Name of Sr. Category Categ Code \mathbf{C} No Course Min \mathbf{L} T P C ory H Mar Comp for onent ks **Passin** Legal Aspects 24 **ESE** 60 23UGPC 40 **PCC** in Civil 3* 3 1 1 C-CE801 **ISE** 40 16 Engineering 24 **ESE** 60 23UGPC Design of 40 **PCC** 3* 3 2 2 Program C-CE802 **Bridges ISE** 40 Course 16 24 23UGPE Adv. **ESE** 60 40 PEC-6 C6-Construction 2 2 2 4 CE803 ISE 40 Tech 16 23UGMD Multidiscipli MDM Construction 5 M6-CE 2 2 2 20 20 **ISA** 50 nary -6 **Practices** Courses 804L 40 40 23UGEL **ISA** 100 Interns Experiential Industrial 16 6 C-CE805 16 8 Learning hip/ Internship Courses OJT LP 40 40 POE 100 23UGPC Design of 20 7 **PCC** C-CE 802 2 2 20 1 **ISA** 50 **Bridges** L Program Course 10 23UGPE Adv. 10 **ISA** 25 2 8 PEC-6 C6-CE Construction 2 1 803 LP Tech POE 25 10 10 23UGPC 20 20 **ISA** 75 Experiential **PCC** 8 9 C-CE806 **Project** 8 4 Learning 20 20 Courses POE 75 LP 23UGPC Paper Audit 10 Course -A C-Presentation/ ----CE807A Publication VIII

10

0

28

21

38

0

800

320

320

Program Electives Courses (PEC) Basket

	PEC - 4										
Category	Sub Category	Course Code	Name of Course								
Duo ouous			Earthquake Engineering								
Program Course	PEC - 4	23UGPEC4-CE703	Dynamics of Structures								
Course			Finite Element Methods								

Program Electives Courses (PEC) Basket

	PEC - 5										
Category	Sub Category	Course Code	Name of Course								
D			Quantity Surveying and Valuation								
Program Course	PEC - 5	23UGPEC5-CE704	Water Power Engineering								
Course			Maintenance, Retrofitting, Rehabilitation of Structure								

Program Electives Courses (PEC) Basket

	PEC - 6										
Category	Sub Category	Course Code	Name of Course								
Duo omom			Advance Construction Techniques								
Program Course	PEC - 6	23UGPEC6-CE803	Site Investigation Methods and Practices								
Course			Optimization Techniques								

National Education Policy (NEP) 2020 Structure Multidisciplinary Courses Basket

Branch: Civil Engineering

Open Electives Basket offered by Department of Civil Engineering

						eachii Schem		Examination & Evaluation			
Sr. No.	Semester	Course Code	Category	Name of Course	Ţ	T	,	Scheme			
					L	Т	P	Component	Marks	Min for Passing	
1	IV	23UGOE1-	OE-1	Energy and	2			ESE	60	24	
1	1 V	CE 406	OE-1	Environment	2			ISE	40	16	
2	IV 23UGOE1- OE-1 Engineering Geology		Engineering Geology	2			ESE	60	24		
2	1 V	CE 406	OE-1	Engineering Geology	2			ISE	40	16	
1	V	23UGOE2-	OE-2	Optimization	3			ESE	60	24	
1	v	CE 506	OE-2	Technique	3			ISE	40	16	
2	V	V UGOE2- OE-2 Maintenance, Retrofitting,		Retrofitting,	3			ESE	60	24	
2	v	CE 506	OE-2	Rehabilitation of Structure			- -	ISE	40	16	
					5				200	80	

National Education Policy (NEP) 2020 Structure Multidisciplinary Minor (MDM) Courses Basket Branch: Civil Engineering

Sr. No.	Sem	Course Code	Categ	Name of Course	Teaching Scheme		_	С	Н	Examination & Evaluation Scheme			
					L	T	P	C	11	Component	Marks	Min for Passing	
1	III	23UGMD M1-CE 306T	MDM -1	Construction Materials	1	1	-	2	2	ISA	50	20	20
2	IV	23UGMD M2-CE 405T	MDM -2	Disaster Management	1	1	1	2	2	ISA	50	20	20
3	V	23UGMD	MDM	Solid Waste	3	1		4	4	ESE	60	24	40
3	v	M3-CE505	-3	Management	3	1	1	4	4	ISE	40	16	40
4	VI	23UGMD M4- CE606L	MDM -4	Town Planning	2		1	2	2	ISA	50	20	20
5	VII	23UMDM5 -CE705L	MDM -5	Smart Cities and Sustainable Development	2	1	1	2	2	ISA	50	20	20
6	VIII	23UGMD M6-CE 804L	MDM -6	Construction Practices	2			2	2	ISA	50	20	20
					11	2	2	14	15		350	140	140

National Education Policy (NEP) 2020 Structure

Branch: Civil Engineering

Exit Option to Qualify Certification after First Year, Diploma after Second Year and B. Tech. Voc. After Third Year

Exit Option to Qualify Certification completion of F. Y. B. Tech.: Any Three (03) Skill based Courses

					Teacl	hing So	cheme			Examination & Evaluation			
Sr. No	Categor	Sub	Cours	Name of						Scheme			
·	y	Categor y	e Code	Course	L		P	C	СН	Component	Marks	Min for Passing	
1	Skill Courses	Vocational and Skill Enhancem ent Course (VSEC)		Building Services (Compulsory)	2		4	2	6	ISA	50	20	
2		PCC		Construction Materials	2		2	3	4	ISA	50	20	
3	Program Course	PCC	Any Two	Basics of Surveying	2		2	3	4	ISA	50	20	
4		PCC		Auto CAD	2		2	3	4	ISA	50	20	
					8	0	10	11	18	0	200	80	

Exit Option to Qualify Diploma completion of S. Y. B. Tech.: Any Two (02) Skill based Courses of 6 credits

Sr. No	Category	Sub	Course	Name of Course	ŗ	Feac l	hing S	chen	ne	Examination & Evaluation Scheme			
NO		Category	Code		L	Т	P	С	СН	Component	Marks	Min for Passing	
1	Program	PCC	Any	Building Planning and Drawing	2		2	3	4	ISA	50	20	
2	Course	PCC	One	Introduction to Foundation Engineering	2		2	3	4	ISA	50	20	
3	Experiential Learning Courses	Project		Mini Project (Compulsory)			6	3	6	ISA	50	20	
					4	0	10	9	14	0	200	80	

Exit Option to Qualify B. Tech. Vocational completion of T. Y. B. Tech.: Any Two (02) Skill based Courses of 6 credits

	Category	Sub				`eachi Schen				Examination		luation
Sr. No			Course Code	Name of Course						Scheme		
140		Category		Course	L	T	P	C	СН	Component	Marks	Min for Passing
1	Program Course	PCC	Any One	Structural Design and Drawing	2	-1	2	3	4	ISA	50	20
2	Course	PCC	One	Quantity Surveying and Valuation	1	-1-	4	3	5	ISA	50	20
3	Experien tial Learning Courses	Project		Mini Project (Compulsory)		-1-	6	3	6	ISA	50	20
					3	0	12	9	15	0	150	60

Honor Degree Course in Infrastructure Engineering (Civil Engineering)

(To be implemented from 2026-27)

Credit Scheme as per NEP 2020 Policy

				Т	eachii	ng and	1		Examination& EvaluationScheme					
Course				1,		Credit		ne			Mir	ì		
Code	CourseTitle	Semester	Category	L	P	Т	С	СН	Components	Marks	forPass ing			
HOOF H	Airport								ESE	60 24				
UGCE-H- 501	Engineering	V	ESC	4			4	4	ISE	40	16	40		
									ESE	60	24			
UGCE-H- 601	Railway Engineering	VI	ESC	4			4	4	ISE	40	16	40		
	Metro								ESE	60	24			
UGCE-H- 701	Transportation Systems	VII	ESC	4			4	4	ISE	40	16	40		
	Dock & Harbor								ESE	60	24			
UGCE-H- 801	Engineering	VIII	ESC	4			4	4	ISE	40	16	40		
UGCE-H- 501T	Airport Engineering	v	ESC				1	2	ISA	25	10	10		
UGCE-H- 601T	Railway Engineering	VI	ESC				1	2	ISA	25	10	10		
UGCE-H- 701T	Metro Transportation Systems	VII	ESC				1	2	ISA	25	10	10		
UGCE-H- 801T	Dock & Harbor Engineering	VIII	ESC				1	2	ISA	25	10	10		
				16			20	24		500				

Note: In theory examination, there will be separate passing of ESE and ISE.

23UGPCC-CE301-STRENGTH OF MATERIALS

Lectures 3 Hrs/Week **Evaluation Scheme** Credit 2 **ISE**: 40 Marks **Tutorials ESE**: 60 Marks

Course Objectives: The objective of the course is to

- 1. To develop an understanding of the basic principles of Structural Analysis.
- 2. Study the internal effects and deformations caused by the applied loads.
- 3. Understand the analysis and design aspects of structural engineering.

Course Outcomes:

COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy
CO1	Evaluate the response of elastic body for external actions and compute design forces	Understand
CO2	Use different engineering properties and behaviour of the materials like ductility, toughness etc.	Understand
CO3	Understand the Different forces in trusses	Understand
CO4	Analyze bending stresses for different shape of the flexural member	Understand
CO5	Justify Shear Stress under different cross section	Apply Evaluate
CO6	Exhibit combined effect of moment, torque and axial thrust, variation in stress distribution and nature of failure due torque.	Apply

Description:

Strengths of Material is focused on analyzing stresses and deflections in materials under load. Knowledge of stresses and deflections allows for the safe design of structures that are capable of supporting their intended

stresses and deflections allows for the safe design of structures that are capable of supporting their intended loads. Life of the Civil Components is greatly influenced by the Load and material properties So analysis of load and mechanical properties identification is very important task to select the appropriate material, One should know about required properties for specified task. This course deals with different engineering material												
load and mechanical properties identification is very important task to select the appropriate material, One												
load and me	echanica	l pro	operties identification is very important task to select the appropriate mater	rial, One								
should know	about r	equi	red properties for specified task. This course deals with different engineering	material								
and their pro	perties.	And	several analysis methods									
Prerequ	icitec•	1: Basics of Engineering Mechanics										
Trerequ	isites.	2:	Resultant and moment Calculation									
3: Moment of Inertia												
			Section – I									
	Simple Stress & Strain:											
	Engineering properties of different materials, Simple stress and strain, Hooke's law, elastic behavior of the body under external actions. Composite sections under axial loading, Temperature stresses and strains, Elastic constants, Normal stresses and strains in three dimensions.											
Unit 1	Hooke Comp	e's l osite	aw, elastic behavior of the body under external actions. e sections under axial loading, Temperature stresses and strains,	6 Hrs								
Unit 1	Hooke Comp Elastic	e's l osite	aw, elastic behavior of the body under external actions. e sections under axial loading, Temperature stresses and strains,	6 Hrs								

	Analysis of perfect trusses									
Unit 3	Introduction to truss. Types of Truss, Assumptions made in analysis of truss, Analysis of pin jointed truss using method of joints & method of sections.	6 Hrs								
	Section – II									
	Bending stresses:									
Unit 4	Introduction to bending stresses, Theory of pure bending. Derivation of flexural formula. Bending stresses for symmetrical & unsymmetrical section.	6 Hrs								
	Shear stresses in beam:									
Unit 5	Fundamentals of Shear stresses, Shear stress distribution diagrams of standard section, Shear stress distribution for symmetrical & unsymmetrical section.									
	Torsion of circular shaft:									
Unit 6	Analysis of circular shaft subjected to torsion. Power transmitted to circular shaft. Shafts subjected to combined bending, torsion & axial thrust	6 Hrs								

Mapping of POs & COs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	applicab	le
													PSO1	PSO2	PSO3
CO1	1	2			1										
CO2	1	2	1	2											
CO3	1	2													
CO4			2	2	2										
CO5	1	2	2												
CO6	1	2			1										

References:

Tex	at Books
1	"Strength of Materials" - R.K.Bansal., Laxmi Publications.
2	"Strength of Materials" - S Ramamrutham, DhanapatRai Publications.
3	"Structural Analysis" - Bhavikatti S.S, Vikas Publications house New Dehli.
4	"Strength of Materials" - R.K.Rajput., S.Chand Publications.
Ref	erence Books
1	"Mechanics of Materials" - Gere and Timoshenko, CBS publishers.
2	"Strength of Material" - F. L. Singer and Pytel, Harper and Row publication.
3	"Mechanics of Material" - Beer and Johnston, M.

23UGPCC-CE302-SURVEYING

Lectures: *3 Hrs/WeekEvaluation SchemeCredit: 2ISE : 40 MarksTutorials: ---ESE : 60 Marks

Course Objectives: The objective of the course is to

- 1. To obtain a full understanding of the methods of measurement, errors to be expected, and their control.
- 2. To know the basics of levelling and theodolite survey in elevation and angular measurements.
- 3. To find out area and volumes using various instruments.
- 4. To study the significance of plane table surveying in plan making.
- 5. To be able to use minor instruments with efficiency.
- 6. To understand the importance of surveying in the field of civil engineering.

Course	Outcomes:	
COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy
CO1	Evaluate linear and angular measurements and find out various contour lines	Knowledge Understand
CO2	Analyze how to find out areas and volumes of irregular figures	Understand
CO3	Understand various Methods and applications of plane table survey	Understand Apply
CO4	Interpret the various uses of thedolite and application of trigonometrical levelling	Understand Appply
CO5	Apply the basic methods used to trace the traverse and find out omitted measurements	Apply Evaluate
CO6	Exhibit use of minor instruments and apply various methods of hydrographic and tunnel survey	Apply

Description:

Surveying is an engineering operation that involves assessing and recording details about an area of land. These observations can then be used to help plan construction projects. The main purpose of surveying in civil engineering is to determine the three-dimensional relationships between different locations. Surveys are used to collect data about landforms, natural features, and man-made structures. This data is then used to create maps and plans for projects like bridges, roads, and tunnels.

Levelling and Contouring:											
Section – I											
	3:	Use of Chain & Tape									
Trefequisites.	2:	Area and Volume calculation									
Prerequisites:	1:	Basics of Basic Civil Engineering									

Unit 1	Introduction to levelling. Permanent Adjustments of dumpy level. Reciprocal levelling, Sensitivity of bubble tube, Corrections – curvature and refraction Contouring – methods and applications	6 Hrs
	Areas and volumes:	
Unit 2	Digital Planimeter. Area- Trapezoidal, Simpsons rule, Mid - ordinate rule, Average ordinate. Volume- Trapezoidal and Simpsons Rule, Capacity contouring	6 Hrs
	Plane Table Surveying:	
Unit 3	Principles, accessories, significance and adjustments. Methods and applications of plane table survey	6 Hrs
	Section – II	
	Theodolite:	
Unit 4	Vernier theodolite – components, uses and adjustments. Applications – Trigonometrical levelling	6 Hrs
	Theodolite Traversing:	
Unit 5	Objectives, traverse table, plotting. Omitted measurements	6 Hrs
	Applications:	1
Unit 6	Usage of minor instruments- Hand Level, Abney Level, Ghat Tracer and Box Sextant. Hydrographic survey.	6 Hrs
	Tunnel survey	

Mapping of POs & COs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	applicab	le
													PSO1	PSO2	PSO3
CO1	1	2			1										
CO2	1	2	1	1											
CO3	1	1													
CO4			2	1	2										
CO5	1	2	1												
CO6	1	1			1										

References:

Tex	at Books
	Surveying and Levelling Vol. I and Vol. II - T. P. Kanetkar and S.V.Kulkarni, Pune Vidyarthi Griha Prakashan
	Surveying Vol. I & II - Dr. B. C. Punmia, Ashok K. Jain, Arun K.Jain, Laxmi Publications.
3	Surveying and Levelling-N. N. Basak, Tata McGrawHill.

4	Surveying, Vol. I & II - S. K. Duggal, TataMcGrawHill.
5	Surveying and Levelling - R. Agor, Khanna Publishers.
Ref	ference Books
1	Plane Surveying - A. M. Chandra, New Age International Publishers.
2	Surveying Vol. I & II - Dr. K. R. Arora, Standard Book House
3	Surveying and Levelling - Subramanian, Oxford University Press

23UGPCC-CE303-FLUID MECHANICS

Lectures: 3 Hrs/WeekEvaluation SchemeCredit: 2ISE : 40 MarksTutorials: ---ESE : 60 Marks

Course Objectives: The objective of the course is to

- 1. To study processes and science of fluid and their properties.
- 2. To study pressure measuring devices and pressure diagram.
- 3. To apply basic principles in fluid flow problems.
- 4. To identify the losses in pipes.

Course Outcomes:

COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy
CO1	Study the basic properties of fluids and their behavior under application of various force systems.	Knowledge Understand
CO2	Discuss the basic concepts and principles in fluid statics, fluid kinematics and fluid dynamics with their applications in fluid flow problems.	Understand
CO3	Recognize the principles of continuity, momentum and energy as applied to fluid in motion.	Understand
CO4	Apply the equations to analyze problems by making proper assumptions and learn systematic engineering methods to solve practical fluid mechanics problems	Apply Evaluate

Description:

Without Fluid survival of Living Organism is highly impossible. Whole Engineering sector is greatly influenced by Fluid. Fluid Mechanics helps to understand the behavior of fluid under various forces and at different atmospheric conditions, and to select proper fluid for various applications. In this course students will learn about fundamentals, properties, principles and governing equations of fluid behavior in statics and in motion. Students willget new problem solving approaches like control volume concept, streamline patterns and fluid flow analysis. This course has six units namely i) Fluid Properties ii) Fluid Statics iii) Fluid Kinematics iv) Fluid Kinetics v) Impact of jet v) Losses in pipes

Prerequisites:		Applied Mechanics
Trerequisites.	2:	Engineering Mathematics
	3:	Engineering Physics
	4:	Basic Civil Engineering

	Section – I	
	Properties of fluid:	
Unit 1	Introduction: Physical Properties of Fluids (Density, Specific Weight, Specific Volume, Specific Gravity, Viscosity: Dynamic and Kinematic Viscosity, Compressibility, Surface tension, Capillary Effect, Vapour Pressure and Cavitation), Newton's law of viscosity, Types of Fluids. Pressure, Types of Pressure, Pascal's Law, Hydrostatic Law.	7Hrs
	Fluid Statics:	

Unit 2	 A. Pressure Measuring Devices, Pressure Head, Pressure Diagram, Total Pressure and Centre of Pressure, Forces on Plane Surfaces. Forces on vertical walls, gates and dams. B. Buoyancy and Floatation: Archimedes's Principle, Metacentre, Stability of Submerged and Floating Bodies. 	6 Hrs
	Fluid Kinematics:	
Unit 3	Types of Flows, Stream lines, Streak Line, Path Line, Stream Tube, Stream Bundle, Equipotential lines, velocity and acceleration of fluid, Stream Function and Velocity Potential Function, Flow Net- (Properties and Uses), Continuity Equation (3-D Cartesian Form).	6 Hrs
	Section – II	
	Fluid Kinetics:	
Unit 4	Forces Acting on Fluid in Motion, Euler's Equation along a Streamline, Bernoulli's equations, Bernoulli's Theorem assumptions, Limitations and modifications. Bernoulli's Applications: Venturimeter (Horizontal), Orificemeter, Orifices, Time required for Emptying the Tank, Concept of HGL and TEL. Introduction of mouthpiece and Rotameter.	7Hrs
	Impact of Jet:	
Unit 5	Impulse Momentum Principle, Impact of Jet on Vanes- Flat (Stationary and Moving), Impact of Jet on flat Inclined plate (Stationary and Moving). Practical examples. Series of Vanes Mounted on Wheel.	5Hrs
	Losses in Pipes:	
Unit 6	A. Major and Minor Losses, Darcy-Wiesbach Equation, Concept of Equivalent Pipe, Dupit's Equation.	5Hrs
	B. Pipes in Series and Parallel and Syphon pipe, Two Reservoir Problems, Concept of Water hammer. Surge Tanks (Function, Location and Uses).	

Mapping of POs & COs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	applicab	le
													PSO1	PSO2	PSO3
CO1	1	2		1		2									
CO2		2	1	2		1									
CO3	2	1		1											
CO4		2			1	1									

References:

Tex	Text Books										
1	Fluid Mechanics – A.K. Jain – Khanna Pub., Delhi.										
	Fluid Mechanics – Hydraulic and Hydraulic Mechanics -Modi/Seth – Standard Book House, Delhi.										

3	Fluid Mechanics and hydraulic machine-R.K.Bansal, Laxmi Pubication.
4	Fluid Mechanics – Garde-Mirajgaonkar – Nemchandand Bros., Roorkee.
5	Fluid Mechanics – S. Nagrathanam – Khanna Pub., Delhi.
Ref	erence Books
1	Fluid Mechanics – Streeter-McGraw-Hill International Book Co., Auckland.
2	Elementary Fluid Mechanics – H. Rouse – Toppan C. Ltd. Tokyo.
3	Fundamentals of Fluid Mechanics, Munson, Young, Okiishi, Huebesch, Wiley Publication
4	Fluid Mechanics – Shames - McGraw-Hill International Book Co., Auckland

23UGPCC-CE304-ENGINEERING MATHEMATICS FOR CIVIL ENGINEERING

Lectures: 2 Hrs/WeekEvaluation SchemeCredit: 2ISE : 40 MarksTutorials: 60 Marks

Course Objectives: The objective of the course is to

- 1. Develop mathematical skills and enhance thinking power of students.
- 2. Give the knowledge to the students of Linear Differential Equations, Vector Differential Calculus, Statistics and Probability, Numerical methods of solving Algebraic and Transcendental equations with an emphasis on the application of solving engineering problems.
- 3. Prepare students to formulate a mathematical model using engineering skills & interpret the solution in real world.

Course Outcomes: At the end of successful completion of the course, the student willbe **Blooms COs** able to **Taxonomy** CO₁ Solve Linear Differential Equation of higher order Understand CO₂ Use numerical techniques to find values of derivative numerically. Apply Use numerical methods methods of solving algebraic and transcendental equations CO₃ **Apply** of one variable and value of definite integral. Calculate divergence, curl, gradient and directional derivative of a vector CO₄ Understand and scalar point function

Apply

Understand

Use Binomial, Poisson and Normal distributions to calculate probabilities

Find rank of matrix, eigen values and eigen vectors of square matrix.

Description:

 $e^{ax} \sin ax, e^{ax} \cos ax$)

Numerical Differentiation

CO₅

CO6

Mathematics for Civil Engineering contains Mathematical methods and techniques that are used to solve complex Civil engineering problems. This course has six units namely i) Linear Differential equation, ii) Numerical Differentiation iii) Numerical Solution of Algebraic and Transcendental Equations iv) Vector Differential Calculus v) Probability Distribution and vi) Linear Algebra

Prerequisites:		1:	Trigonometric ide	entities a	ınd Log	arithmic id	entities				
		2:	Differentiation an	ifferentiation and integration formulae							
		3:	Probability.								
	Section – I										
	Linear Differential Equations with constant Coefficients										
Unit 1		s to f	nd complementary	function	١.		coefficients-Definition,	5 Hrs			
	Methods to find Particular Integrals (e^{ax} , $\sin ax$ and $\cos ax$, x^m , $e^{ax}x^m$,										

Unit 2	Introduction, Newton's forward difference interpolation formula, Newton's backward difference interpolation formula, Sterling's central difference interpolation formula, Newton's divided difference formula.	4 Hrs						
	Numerical Methods							
Unit 3	Bisection method Newton-Raphson method. Trapezoidal Rule Simpson Rule	4 Hrs						
	Section – II							
	Vector Differential Calculus							
Unit 4	Differentiation of vectors. Gradient of scalar point function.							
	Directional derivative.							
	Divergence of vector point function.	5 Hrs						
	Curl of a vector point function. Irrotational, Solenoidal and Scalar potential function of a vector field.							
	Probability Distribution							
Unit 5	Random variables, Discrete Probability distribution, Continuous probability distribution. Binomial Distribution. Poisson Distribution. Normal Distribution	4 Hrs						
	Linear Algebra							
Unit 6	Rank of matrix, Echelon form, Solution of System of linear Equations Eigen values and Eigen Vector	4 Hrs						

Mapping of POs & COs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If applicable		le
													PSO1	PSO2	PSO3
CO1	2	1											-		
CO2	2	1							-		1	-	-		
CO3	2	1							1		1	-	1	1	
CO4	2	1													
CO5	2	1													
CO6	2	1													

References:

Tex	Text Books						
1	Higher Engineering Mathematics, Dr. B. S. Grewal, S. Chand and Company, 40th Edition.						
2	Advanced Engineering Mathematics, H. K. Das, S. Chand Publication, 8th Edition.						
Ref	Reference Books						
1	Higher Engineering Mathematics, B. V. Ramana, Tata Mc Graw Hill, New Delhi						

2	A Text Book of Applied Mathematics, Vol. I and II, P. N.Wartikar and J. N. Wartikar, Vidyarthi Griha Prakashan, Pune.
3	A textbook of Engineering Mathematics, N. P. Bali, Iyengar, Laxmi Publications (P) Ltd, New Delhi
4	Advanced Engineering Mathematics, Erwin Kreyszig, Wiley India Pvt. Ltd

Web Links/ Video Lectures

- 1. https://nptel.ac.in/courses/111104521
- 2. https://nptel.ac.in/courses/111107105
- 3. https://nptel.ac.in/courses/111106112
- 4. https://nptel.ac.in/courses/111107062
- 5. https://nptel.ac.in/courses/111107107 https://nptel.ac.in/courses/111108066

23UGPCC-CE305-BUILDING CONSTRUCTION AND DRAWING

Lectures : 3 Hrs/Week **Evaluation Scheme**

Credit : 2 ISE : 40 Marks
Tutorials : --- ESE : 60 Marks

Course Objectives: The objective of the course is to

- 1. To understand concept of Civil engineering drawing.
- 2. To describe requirements and draw components of building.
- 3. To develop basics for planning and design of building.

Course Outcomes:

2							
COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy					
CO1	Define and illustrate types and components of Civil Engineering drawing.	Remember Understand					
CO2	Illustrate the procedure and prepare perspective drawing of various objects.	Apply					
CO3	Define basic requirements of building and Demonstrate different types of masonry.	Understand					
CO4	State and produce drawings of lintel and arches.	Remember Apply					
CO5	State and prepare drawings of doors and windows.	Remember Apply					
CO6	Describe and sketch different types of staircase.	Understand Apply					

Description:

Building Construction is one of the important sectors of Civil engineering. Basic need of Building construction is to get versed with its various components along with basics of civil engineering drawing. The Knowledge of Building construction, its components and basics of civil engineering drawing forms basis of planning and design of buildings and preparation of standard drawings.

Prerequisites:		1:	Components of building.						
		2:	2: Building Construction materials.						
		3:	Technical Drawing Concepts.						
			Section – I						
	Basics of Civil Engineering Drawing:								
[]	Civil Engineering Drawing: Necessity, Types(Submission, Working,								
Unit 1	Architectural)								
	Components :concept of Plan, Elevation, Section related to building								
	Lettering, symbols, type of lines and Dimensioning as per standards.								
	Perspective Drawing:								
Unit 2	Perspective Drawing: Terminology, Types								
omt 2	Rules for drawing perspective. Procedure of drawing Parallel perspective and angular perspectives of simple objects								
	Build	ina.	Basic requirements, Masonry for construction						

Unit 3	Basic requirements of a building as a whole: Strength and stability, Dimensional 6 Hrs stability, comfort and convenience, damp prevention, water-proofing techniques,									
	heat insulation, day lighting and ventilation. Sound insulation and anti-termite									
	treatment.									
	Masonry: Stone, Brick and Composite									
	Section – II									
	Lintels and Arches:									
Unit 4	Lintel: Necessity, Materials (wood, stone, brick, steel, R.C.C. and reinforced brick lintels.)									
	Arches: Technical terms, types of arches based on number of center, Shape and Material used.	1								
	Doors and Windows:									
Unit 5	Doors: Technical terms, Specification for door, Types, fixtures and fastening. Windows: Technical terms, Specification for door, Types, fixtures and fastening.	6 Hrs								
	Stairs, Ramps, Lifts and Escalators:									
Unit 6	Necessity of Stairs, Ramps, Lifts and Escalators Stairs: Technical terms, requirements of a good stair, classification according to shape and materials for construction.	6 Hrs								
	Design of stairs (Dog Legged, quarter turn and Open Well), Introduction to Ramps, Lifts and Escalator									

Mapping of POs & COs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If applicable		
													PSO1	PSO2	PSO3
CO1	2	-	-	-	-	2	-	1	1	2	-	2	1	1	-
CO2	2	-	-	-	-	2	-	-	-	2	-	1	-	-	-
CO3	2	-	-	-	-	3	1	1	1	2	-	2	1	1	-
CO4	2	-	-	-	-	3	1	1	1	2	-	2	1	1	-
CO5	2	1	1	-	-	3	1	1	1	2	-	2	1	1	-
CO6	2	1	1	-	-	3	1	1	1	2	-	2	1	1	-

References:

Text	Books
1	"A Text Book of Building Construction" - S.P. Arora, S.P. Bindra, Dhanpat Rai Publications.
2	"Building Construction" - B.C.Punmia, Er.A.K.Jain, Dr. A.K.Jain, Laxmi Publications.
3	"Building Construction" – Rangwala, Charotar Publicatins.
4	"Civil Engineering Drawing" - M. Chakraborty.
5	"A Course in Civil Engineering Drawing" - V.B.Sikka, S.K.Kataria and Sons.
Refe	rence Books
	"A to Z of Practical Building Construction and Its Management" - Sandeep Mantri Satya Prakashan, New Delhi.

2	"Handbook of Building Construction" – M. M. Goyal (Amrindra Consultancy).
3	"Practical Handbook – Buiding baandhkam Va dekhrekh Part I and II", Pramod Beri, DIT publication, third edition. (Marathi Language).
	I.S. 962 – 1989 Code for Practice for Architectural and Building Drawings.
Web	Links/ Video Lectures
1	Engineering Drawing: https://nptel.ac.in/courses/112103019
2	Building Materials and construction: https://nptel.ac.in/courses/105102088
3	Building Materials: https://archive.nptel.ac.in/courses/105/106/105106206/#

23UGMDM1-CE306T-CONSTRUCTION MATERIALS

Lectures: 1 Hrs/Week
Credit: 2
Evaluation Scheme
ISA: 50 Marks

Tutorials: 1 Hrs/Week

Course O	biectives:	The ob	iective	of the	course is to
Course o	DICCLIACO.			or the	course is to

- 1. Know the building Materials.
- 2. Describe properties and suitability of various building materials..
- 3. Produce drawings of different building components.

Course Outcomes:

COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy
CO1	Selecting suitable materials for buildings and adopting suitable construction techniques	Understand, Create, Apply
CO2	Exhibiting the knowledge of building finishes.	Understand, Apply
CO3	Solving the problems of environmental issues concerned to building materials and cost-effective building technologies.	Evaluate, Apply
CO4	Recommending various types of alternative building materials and technologies and designing an energy-efficient building by considering local climatic conditions and building materials.	

Description:

Life of the Civil Components is greatly influenced by the Load and material properties So analysis of load and mechanical properties identification is very important task to select the appropriate material, One should know about required properties for specified task. This course deals with different engineering material and their properties. And several analysis methods

properties. A	nd seve	ral a	nalysis methods								
ъ.	•,	1:	1: Basics civil engineering.								
Prerequi	Prerequisites:		2: Building Material, Construction & Drawings.								
	Section – I										
Unit 1	Steel	: Use	Used for foundations, walls, floors, and structural elements. ed for beams, columns, reinforcement, and structural frames. Used for walls, facades, and decorative elements.	3 Hrs							
Unit 2	Woo	Blocks: Used for walls, partitions, and foundations. Wood: Used for doors, windows, furniture, and decorative elements. Glass: Used for windows, doors, facades, and decorative elements.									
Unit 3	Til	Roofing materials: Tiles, Slate, AC sheet, Metal sheets, Asphalt shingles, Concept of Proflex (truss less) roof. 2 Hrs									

	Section – II							
Unit 4	Insulation materials: Fiberglass, Rock wool, Polyurethane foam, Reflective insulation, Finishing materials: Paint, Wallpaper, Ceramic tiles, Carpet, Flooring materials (hardwood, laminate, etc.)	3 Hrs						
Unit 5	Plumbing materials: Pipes (copper, PVC, etc.), Fittings (elbows, tees, etc.), Valves, Fixtures (sinks, toilets, etc.)	2Hrs						
Unit 6	Electrical materials: Wires , Cables, Switches, Outlets, Lighting fixtures	2Hrs						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	applicab	le
													PSO1	PSO2	PSO3
CO1	1	1	1	1	1	2	2				1		1		
CO2	1	2	2	1										1	
CO3	1	3	3	1	1	3								1	
CO4	1	2	3	3	1	2	3	2			1	1			3

Tex	Text Books						
1	"Building Materials" by S. S. Bhavikatti						
2	"Construction Materials" by P. C. Varghese						
3	"Building Materials and Construction" by R. P. Gupta						
4	"Materials for Civil Engineering" by R. W. McDowell						
5	"Construction Materials: Their Nature and Behaviour" by J. M. Illston						
6	"Building Materials: Science and Technology" by S. V. Patankar						
7	"Construction Materials and Processes" by A. K. Mukherjee						
8	"Building Materials and Construction Techniques" by A. R. Sampath						
9	"Materials of Construction" by A. M. Neville						
10	"Building Materials and Components" by J. R. Smith						
11	"Building Materials" by M L Gambhir & Neha Jamwal						

23UGEEC1-CE307-PROFESSIONAL LEADERSHIP AND INTERPERSONAL SKILLS

Lectures: 2 Hrs/WeekEvaluation SchemeCredit: 2ISA : 25 Marks

Tutorials : ---

Course Objectives: The objective of the course is to

- 1. To develop essential skills to influence and motivate others.
- 2. Create and maintain leadership traits, emotional and social intelligence.
- 3. To inculcate ethics and moral values to make balanced personality.

Course Outcomes:

COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy
CO1	Explain the traits of leadership with real world example.	Knowledge Understand
CO2	Analyze and solve the problems related to conflicts and time management.	Understand
CO3	Exhibit interpersonal communication skill.	Apply and Evaluate
CO4	Demonstrate skills needed to be a effective employee in industry.	Apply

Description:

This subject provides a key way to become proficient in various aspects of work life. Further it focuses on important aspects like leadership and interpersonal relations to be inculcate in order to become a good employee and human being.

good employee and human being .										
.	• • .	1: Good Reading and Understanding skills								
Prerequi	isites:	2:	Ability to speak English moderately							
	Section – I									
Unit 1	Leadership Skills and types , SMART Goal Setting , SWOC Analysis, Self									
Cint 1	Management, Motivating People.									
Unit 2	Conflict management, Decision Making, Time Management, Critical Thinking									
	(Discussion on Real world examples of each point with task).									
Section – II										
Unit 3	Impoi	tanc	e of interpersonal skills, Active listening and Communication,	6 Hrs						
	Empathy, teamwork, Networking and collaboration, Creativity and Problem									

	solving. Understanding Maslow's Need hierarchy theory. (All points need to be supported with Classroom Activity).	
Unit 4	Digital Literacy :Social Media literacy and Internet surfing skills, Positive thinking ,Body Language ,Business etiquettes, Emotional intelligence.	6 Hrs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If applicable		le
													PSO1	PSO2	PSO3
CO1	1	1	-	-	-										
CO2	-	1	1	-	-										
CO3	-	-	1	1	-										
CO4	-	-	1	1	1			1	1	1			1	1	
CO5	-	-	1	1	-								-	!	-
CO6	-	-	-	-	-	1							-		

Ref	ference Books.
1	Krishna Mohan and Meera Banerjee, <i>Developing Communication Skills</i> , MacMillan India Ltd, New Delhi.
2	Masters, L. Ann et. al, Persoal Development of Life and Work, New Delhi, Cengage Learning.
3	Jeff Butterfield, Soft skills for Everyone, Cengage Learning India Private Ltd.
4	Gopalswamy Ramesh et al., The ACE of Soft Skills : Attitude , communication and Etiquette for Success.
5	Northouse, P. G. (2018). Leadership: Theory and practice. Sage publications.
6	Personality Development and Soft Skills by Barun K. Mitra.
We	b Links/ Video Lectures
1	NPTEL Lecture Series.

23UGVEC1-CE308-PERSONAL VALUES AND ETHICS

Course Details: V	alue I	Education Course (VEC)					
Teaching Scheme			Evaluation Scheme				
Lectures	:	1 Hr per week	ISE	:			
Credits	:		ESE	:			
Tutorial	:	1 Hr per week	ISA	:	25 Marks		
Credits	:	2	POE	:			
Total Credits	:	2	Total Marks	:	25 Marks		

Course Objectives: The objective of the course is to

- 1. Development of a positive character, empathetic human being, responsible citizen, a compassionate and empathetic being.
- 2. Introducing the professional ethics and its implementation in professional work.
- 3. To understand and follow the ethical practices in engineering.

Course Outcomes:

Cos	At the end of successful completion of the course the student will be able to	Blooms Taxonomy
CO1	To understand the moral values that ought to guide the engineering profession.	Understand
CO2	To create an awareness on Engineering Ethics and Human Values	Create
CO3	To inspire Moral and Social Values and Loyalty.	Analyze
CO4	To understand harmony in the self.	Understand

Description:

This course explores the integration of values in engineering practices. It covers theoretical foundations, policy analysis, and practical applications in professional carrier. Students will critically examine how values influence professional decisions and outcomes, and develop strategies to implement value-driven carrier.

	Introduction to Value Education: Right Understanding; Relationship and Physical Facility;
· ·	Understanding Value Education; Self-exploration as the Process for Value Education,
Unit 1	Continuous Happiness and Prosperity -the Basic Human Aspiration-Current Scenario and
	Method to Fulfill the Basic Human Aspirations.
	Introduction to Professional Ethics: Basic Concepts, Governing Ethics, Personal &
	Professional Ethics, Ethical Dilemmas, Life Skills, Emotional Intelligence, Thoughts of
Unit 2	Ethics, Value Education, Dimensions of Ethics, Profession and professionalism, Professional
	Associations, Professional Risks, Professional Accountabilities, Professional Success, Ethics
	and Profession.
	Professional Practices in Engineering: Professions and Norms of Professional Conduct,
·	Norms of Professional Conduct vs. Profession; Responsibilities, Obligations and Moral
Unit 3	Values in Professional Ethics, Professional codes of ethics, the limits of predictability and
	responsibilities of the engineering profession.

	Central Responsibilities of Engineers – The Centrality of Responsibilities of Professional
	Ethics.
	Harmony in the Human Being: Understanding Human being as the Co-existence of the
	Self and the Body, distinguishing between the Needs of the Self and the Body, The Body as
Unit 4	an Instrument of the Self, Understanding Harmony in the Self, Harmony of the Self with the
	Body, Programme to ensure self-regulation and Health.

References:

	Text Books					
1	Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.					
2	Professional Ethics: R. Subramanian, Oxford University Press, 2015.					
3	Ethics in Engineering Practice & Research, Caroline Whitbeck, 2 nd edition, Cambridge University Press 2015.					
4	Human Values and Professional ethics, Jayashree Suresh, B.S. Raghavan, S. Chand Publications, 3 rd revised edition 2009.					
	Reference Books					
1	Engineering Ethics, Concepts Cases: Charles E Harris Jr., Michael S Pritchard, Michael J Rabins, 4 th edition, Cengage learning, 2015.					
2	Business Ethics concepts & Cases: Manuel G Velasquez, 6 th edition, PHI, 2008.					

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	3	-	3	-	1	-	3
CO2	-	-	-	-	-	3	-	3	-	1	-	3
CO3	-	-	-	-	-	3	-	3	-	1	-	3
CO4	-	-	-	-	-	2	-	2	-	1	-	3

Rating 1: Lower Level

Rating 2: Medium Level

Rating Level 3: Higher Level

23UGFP-CE302 LP-FIELD PROJECT (SURVEYING)

Practicals: 4 hrs / week **Examination Scheme:**

Credits: 2 ISA: 25 Marks
POE: 25 Marks

Course Objectives: The objective of the course is to

1) To familiarize the students with the use of equipments to determine length, Area, volume, angles etc.

2) To familiarize the students with various types of Surveying Methods.

Course Outcomes:

COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy
CO1	Understand Concept of levelling	Knowledge, Apply
CO2	Analysis of horizontal & Vertical angles	Analyze
CO3	Analyze various plane table methods	Analyze
CO4	Explain the concept of Contouring & Traversing	Understand Analyze

Practicals:

Sr. No.	Practical/ Experiment/Tutorial Topic	Hrs.	Bloom's Taxonomy
1	Differential and reciprocal levelling, by Auto or Dumpy Level	4	Apply
2	Two Peg Method	4	Knowledge Apply
3	Sensitivity of bubble tube	4	Apply
4	Methods of plane table survey – any two methods	4	Knowledge, Analyze
5	Measurement of horizontal angles by any two methods	8	Knowledge
6	Trigonometrical levelling- when base is accessible.	4	Analyze
7	Block contouring project for at least 100m x 100m- By Auto Level	8	Apply
8	Theodolite traverse Project –Pentagon	8	Apply

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	Ií	f applical	ole
													PSO1	PSO2	PSO3
CO1	2	1	1	1											
CO2	2	1	2	1											
CO3		2	2												
CO4		1	-	-	-	1	1						1		

Tex	at Books
1	Surveying and Levelling Vol. I and Vol. II - T. P. Kanetkar and S.V.Kulkarni, Pune Vidyarthi Griha Prakashan
2	Surveying Vol. I & II - Dr. B. C. Punmia, Ashok K. Jain, Arun K.Jain, Laxmi Publications.
3	Surveying and Levelling-N. N. Basak, Tata McGrawHill.
4	Surveying, Vol. I & II - S. K. Duggal, TataMcGrawHill.
5	Surveying and Levelling - R. Agor, Khanna Publishers.
Ref	erence Books
1	Plane Surveying - A. M. Chandra, New Age International Publishers.
2	Surveying Vol. I & II - Dr. K. R. Arora, Standard Book House
3	Surveying and Levelling - Subramanian, Oxford University Press

23UGPCC-CE301 LP-STRENGTH OF MATERIAL LAB

Practicals: 2 hrs / week **Examination Scheme:**

Credits: 1 ISA: 25 Marks
POE: 25 Marks

Course Objectives: The objective of the course is to

1) To familiarize the students with the use equipments to determine mechanical properties of materials to acquire the knowledge in Material Testing.

2) To familiarize the students with various Types of load and material behaviour.

Course Outcomes:

COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy
CO1	Determine different properties like strength, elongation, toughness, hardness by doing tests like Tensile test, Impact test, Hardness test.	Knowledge Apply
CO2	Understand Behavior of Member under different loading conditions	Understand
CO3	Determine load carrying capacity of different material	Apply
CO4	Explain the concept of Hardness and strain energy	Understand

Practicals:

Sr. No.	Practical/ Experiment/Tutorial Topic	Hrs.	Bloom's Taxonomy
1	Study of Universal testing machine	2	Apply
2	Tensile test on Mild steel.	2	Knowledge Apply
3	Compression test on mild steel	2	Apply
4	Double Shear test of on mild steel	2	Knowledge, Analyze
5	Water absorption and compressive strength of burnt brick	2	Knowledge
6	Study of Impact testing (Izod and Charpy) on Mild Steel.	2	Analyze
7	Hardness testing (Brinell) on Mild steel, Alluminium and brass	2	Analyze

Mapping of POs & COs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If applicable		ole
													PSO1	PSO2	PSO3
CO1	2	1	1	1											
CO2	2	1	2	2											

CO3	 2	2	 	 	 		 	 	
CO4	 2		 	 	 -	-	 	 	

Tex	xt Books								
1	"Strength of Materials" - R.K.Bansal., Laxmi Publications.								
2	"Strength of Materials" - S Ramamrutham, DhanapatRai Publications.								
3	"Structural Analysis" - Bhavikatti S.S, Vikas Publications house New Dehli.								
Ref	Reference Books								
1	"Mechanics of Materials" - Gere and Timoshenko, CBS publishers.								
2	"Strength of Material" - F. L. Singer and Pytel, Harper and Row publication.								
3	"Mechanics of Material" - Beer and Johnston, M.								

23UGPCC-CE303 LP-FLUID MECHANICS LAB

Practicals: 2 hrs / week **Examination Scheme:**

Credits: 1 ISA: 25 Marks
POE: 25 Marks

Course Objectives: The objective of the course is to

- 1) To study processes and science of fluid and their properties.
- 2) To study pressure measuring devices and pressure diagram.
- 3) To apply basic principles in fluid flow problems.
- 4) To identify the losses in pipes.

Course Outcomes:

COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonom
CO1	Study the basic properties of fluids and their behavior under application of various force systems.	Knowledge Understand
CO2	Discuss the basic concepts and principles in fluid statics, fluid kinematics and fluid dynamics with their applications in fluid flow problems.	Understand
CO3	Recognize the principles of continuity, momentum and energy as applied to fluid in motion.	Understand
CO4	Apply the equations to analyze problems by making proper assumptions and learn systematic engineering methods to solve practical fluid mechanics problems	Apply Evaluate

Practicals:

Sr. No.	Practical/ Experiment/Tutorial Topic	Hrs.	Bloom's Taxonomy
1	Measurement of Discharge.	2	Apply
2	Study of Pressure Measuring Devices.	2	Knowledge Apply
3	Determination of Metacentric Height for Floating Bodies.	2	Apply
4	Verification of Bernoulli's Theorem.	2	Knowledge, Analyze
5	Calibration of Venturimeter.	2	Knowledge
6	Calibration of Orificemeter.	2	Analyze
7	Determination of Hydraulic Coefficients of Orifice.	2	Analyze
8	Reynold's Experiment.	2	Knowledge, Analyze
9	Determination of Friction Factor for Given Pipe.	2	Analyze
10	Determination of Minor Losses in a Given Pipe.	2	Analyze

11	Study of Moody's Chart.	2	Analyze
----	-------------------------	---	---------

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If applicable		ole
													PSO1	PSO2	PSO3
CO1	1	2		1		2									
CO2		2	1	2		1									
CO3	2	1		1											
CO4		2			1	1									

Te	xt Books
1	Fluid Mechanics – A.K. Jain – Khanna Pub., Delhi.
	Fluid Mechanics – Hydraulic and Hydraulic Mechanics -Modi/Seth – Standard Book House, Delhi.
3	Fluid Mechanics and hydraulic machine-R.K.Bansal, Laxmi Pubication.
4	Fluid Mechanics – Garde-Mirajgaonkar – Nemchandand Bros., Roorkee.
5	Fluid Mechanics – S. Nagrathanam – Khanna Pub., Delhi.
Re	ference Books
1	Fluid Mechanics – Streeter-McGraw-Hill International Book Co., Auckland.
2	Elementary Fluid Mechanics – H. Rouse – Toppan C. Ltd. Tokyo.
3	Fundamentals of Fluid Mechanics, Munson, Young, Okiishi, Huebesch, Wiley Publication
4	Fluid Mechanics – Shames - McGraw-Hill International Book Co., Auckland

23UGPCC-CE305 L-BUILDING CONSTRUCTION AND DRAWING LAB

Practicals: 2 hrs / week **Examination Scheme:**

Credits: 1 ISA: 50Marks

Course Objectives: The objective of the course is to

- 1. To understand concept of Civil engineering drawing.
- 2. To describe requirements and draw components of building.
- 3. To develop basics for planning and design of building.

Course Outcomes:

COs	At the end of successful completion of the course the student will beable to	Blooms Taxonomy
CO1	Define and illustrate types and components of Civil Engineering drawing.	Remember Understand
CO2	Illustrate the procedure and prepare perspective drawing of various objects.	Apply
CO3	Define basic requirements of building and Demonstrate different types of masonry.	Understand
CO4	State and produce drawings of lintel and arches.	Remember Apply
CO5	State and prepare drawings of doors and windows.	Remember Apply
CO6	Describe and sketch different types of staircase.	Understand Apply

Practicals:

Sr. No.	Practical/ Experiment/Tutorial Topic	Hrs.	Bloom's Taxonomy
	A. Sketch Book:		
1	Assignment based on unit no.1 (Sketches and related Theory)	2	Remember Apply
2	Assignment based on unit no.2 (Sketches and related Theory)	2	
3	Assignment based on unit no.3 (Sketches and related Theory)	2	
4	Assignment based on unit no.4 (Sketches and related Theory)	2	
5	Assignment based on unit no.5 (Sketches and related Theory)	2	
6	Assignment based on unit no.6 (Sketches and related Theory)	2	
	B. Full Imperial Drawing Sheet		
1	Exercise on parallel and angular perspective of simple objects	4	

2	Typical type of Door and Window with appropriate scale	2	
3	Stairs: Dog legged, quarter turn and Open well.	2	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If applic	If applicable		
													PSO1	PSO2	PSO3	
CO1	2	-	-	-	-	2	-	1	1	2	-	2	1	1	-	
CO2	2	-	-	-	-	2	-	-	-	2	-	1	-	-	-	
CO3	2	-	-	-	-	3	1	1	1	2	-	2	1	1	-	
CO4	2	-	-	-	-	3	1	1	1	2	-	2	1	1	-	
CO5	2	1	1	-	-	3	1	1	1	2	-	2	1	1	-	
CO6	2	1	1	-	-	3	1	1	1	2	-	2	1	1	-	

Text	Books
1	"A Text Book of Building Construction" - S.P. Arora, S.P. Bindra, Dhanpat Rai Publications.
2	"Building Construction" - B.C.Punmia, Er.A.K.Jain, Dr. A.K.Jain, Laxmi Publications.
3	"Building Construction" – Rangwala, Charotar Publicatins.
4	"Civil Engineering Drawing" - M. Chakraborty.
5	"A Course in Civil Engineering Drawing" - V.B.Sikka, S.K.Kataria and Sons.
Refe	rence Books
1	"A to Z of Practical Building Construction and Its Management"- Sandeep Mantri Satya Prakashan, New Delhi.
2	"Handbook of Building Construction" – M. M. Goyal (Amrindra Consultancy).
3	"Practical Handbook – Buiding baandhkam Va dekhrekh Part I and II", Pramod Beri, DIT publication, third edition. (Marathi Language).
4	I.S. 962 – 1989 Code for Practice for Architectural and Building Drawings.
Web	Links/ Video Lectures
1	Engineering Drawing: https://nptel.ac.in/courses/112103019
2	Building Materials and construction: https://nptel.ac.in/courses/105102088
3	Building Materials: https://archive.nptel.ac.in/courses/105/106/105106206/#

23UGPCC-CE309 A -GENERAL PROFICIENCY

Lectures : -- Evaluation Scheme

Credit : --

Tutorials : --

Course Objectives: The objective of the course is to

- 1. Develop basic skills to deal with a variety of business situations
- 2. Improve knowledge of key business concepts.
- 3. Develop skills that improve business reports, letters, e-mail writing

Course Outcomes:

COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy
CO1	Learn to communicate with others in day to day corporate life	Knowledge Understand
CO2	Learn to express in English with greater fluency, accuracy and confidence	Understand
CO3	Learn to handle a variety of business contexts to making presentations, to socializing.	Apply and Evaluate
CO4	Enhance the skills of interviews and public speaking.	Apply

Description:

This subject provides a key way to become proficient in various aspects of work life. Further it focuses on important aspects like leadership and interpersonal relations to be inculcate in order to become a good employee and human being.

		1:	Good Reading and Understanding skills						
Prerequisites:		Ability to speak English moderately							
			Section – I						
Unit 1	Readi	Reading Techniques and Comprehension skills, Present, Future and Past							
01110 1	Tense	Tenses, Phrases.							
Unit 2	Effect	Effective oral Communication: Telephonic, Meeting Handling, Written							
	Communication: Letter Writing, E-mail writing.								
Unit 3	Preparing presentation and conduction, Group Discussion, Business Etiquettes Body language.								
			·						

Unit 4

Interview Techniques and Do's and Don'ts of interviews, Overcoming stage fear.

Mapping of POs & COs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	applicab	le
													PSO1	PSO2	PSO3
CO1	1	1	-	-	-										
CO2	1	1	1	-	-		1		1				1	-	-
CO3	ı	-	1	1	-		1		1				1	1	1
CO4	ı	-	-	1	-		1		1				-	1	-
CO5	1	-	1	1	-		1		-				1		
CO6	-	-	-	-	-	1									

Ref	erence Books.
	K. R. Laxminarayan , <i>English for Technical Communication</i> , SCITECH 2 nd Edition 2014.
2	Dr. M. Hemamalini, <i>Technical English</i> , Wiley, 2014.
	M. V Rodriques, <i>Effective Business Communication</i> , Concept Publishing Company Pvt. Ltd. 2013.
4	T. Thomson, Business English, Heinle & Heinle 2004.
We	b Links/ Video Lectures
1	NPTEL Lecture Series.

23UGPCC-CE401-MECHANICS OF STRUCTURES

Lectures: 3 Hrs/WeekEvaluation SchemeCredit: 2ISE : 40 MarksTutorials: ---ESE : 60 Marks

Course Objectives: The objective of the course is to

- 1. Introduction to structural systems, and to methods of analyzing these systems under various loading conditions.
- 2. To understand behavior of structure under combined loading.
- 3. To analyze the structures subjected to moving loads.

Course	Course Outcomes:						
COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy					
CO1	Evaluate the state of stress at a point due to combined effect essential of different forces acting on a structural member hence to calculate the maximum and minimum direct and shear stresses.	Knowledge Understand					
CO2	Analyze how to superimpose the actions like normal force, shear force bending moment and hence to know the combined effect of these actions on the members.	Understand					
CO3	Understand the location a section experiencing the maximum effect due to moving loads on it.	Understand					
CO4	Interpret the change in behavior of column due to changes in end conditions and dimensions of the column.	Understand					
CO5	Apply the basic methods used to trace the deformed shape of the flexural member.	Apply Evaluate					
CO6	Interpret the stress distribution within the cross section when subjected to various actions and study of strain energy for different action	Apply					

Description:

Life of the Civil Components is greatly influenced by the Load and material properties So analysis of load and mechanical properties identification is very important task to select the appropriate material, One should know about required properties for specified task. This course deals with different engineering material and their properties. And several analysis methods

Prerequisites:		1: Basics of Engineering Mechanics							
		2: moment Calculation and Basic concept of stress							
	3	: Moment of Inertia and Method of section							
		Section – I							
	Princi	pal planes & stresses:							
Unit 1	Normal and shear stresses on any oblique plane. Concept of principal planes and stresses by analytical method & introduction to graphical methods (Mohr'scircle of stress 2-D).								
	Theories of failure: Maximum normal stress, maximum shear stress and maximumstrain energy theory.								
	Combined direct and bending stresses:								
Unit 2		of Combined direct and bending stresses eccentric load, core /kernel of Stability analysis of gravity dam, Analysis of retaining wall, Analysis	6 Hrs						

	of chimney under wind pressure.					
	Influence line diagrams:					
Unit 3	Introduction to Influence line diagram, Muller's Breslau's principle & its applications to statically determinate simple and compound beam.	6 Hrs				
	Section – II					
	Buckling of long columns:					
Unit 4	Fundamentals of Critical load and buckling, Effective length for various end conditions. Slenderness ratio, Safe load on column. Euler's theory and its limitation, Rankine's theory.	6 Hrs				
	Slope and deflection of determinate beams:					
Unit 5	Basic concept of slope and deflection, Slope and deflection of determinate beam with Double integration method, Macaulay's method, Moment-Area method & Conjugate beam method.	6 Hrs				
	Strain Energy and thin walled cylinder:					
Unit 6	Strain energy due to different types of actions, suddenly applied load, gradually appliedload & impact load, strain energy method for deflection of determinate beams.					
	Concept of thin walled cylinder, Hoop and circumferential stresses, Analysis of thin walled cylinder.					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	applicab	le
													PSO1	PSO2	PSO3
CO1	1	2			1										
CO2	1	2	1	2											
CO3	1	2													
CO4			2	2	2										
CO5	1	2	1												
CO6	1	2			1										

Tex	at Books
1	"Strength of Materials" - R.K.Bansal., Laxmi Publications.
2	"Strength of Materials" - S Ramamrutham, DhanapatRai Publications.
3	"Structural Analysis" - Bhavikatti S.S, Vikas Publications house New Dehli.
4	"Strength of Materials" - R.K.Rajput., S.Chand Publications.
Ref	erence Books
1	"Mechanics of Materials" - Gere and Timoshenko, CBS publishers.
2	"Strength of Material" - F. L. Singer and Pytel, Harper and Row publication.
3	"Mechanics of Material" - Beer and Johnston, M.

24UGPCC-CE402-ADVANCED SURVEYING

Lectures: 3 Hrs/WeekEvaluation SchemeCredit: 1ISE : 40 MarksTutorials: ---ESE : 60 Marks

Course Objectives: The objective of the course is to

- 1. To equip students with knowledge of various advanced surveying methodologies used in large-scale survey projects.
- 2. To emphasize how modern instruments and technologies have transformed survey approaches, while maintaining the core principles of surveying.

Course Outcomes:

COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy
CO1	Adopt the principles of advanced surveying instruments	Understand Apply
CO2	Formulate triangulation stations, flight planning and ground control points	Understand Apply
CO3	Show effectiveness of modern surveying instruments to improve accuracy and to save time and for surveying operations.	Apply Analyze
CO4	Evaluate the setting out of various curves	Evaluate
CO5	Appreciate the use of modern techniques for surveying and mapping.	Understand Evaluate

Description:

Advanced surveying encompasses a range of specialized techniques and tools like Tacheometry, Remote sensing, GIS, GPS used for precise measurements and data collection to support various engineering, construction, and scientific projects.

engineering,	, construc	etio	on, and scientific projects.						
ъ.		1: Levelling, Theodolite traversing							
Prerequi	sites: 2	2:	Distance measurement						
	3	3:	Proficiency in using modern instruments						
			Section – I						
Unit 1	Tacheometry								
	Tacheometry – Principles, Suitability, Methods, Stadia diaphragm, Stadia 7 Hrs formulae, Tacheometric contouring.								
	Geodetic Surveying								
Unit 2	Triangulation Principle and Classification, system, Selection of station, Base line, Measurement, Correction and use of sub tense bar, Signals, satellite station, Reduction to center, Trilateration.								
	Moder	rn	Surveying Equipment's and Project Surveys						
Unit 3	Principle of EDM, Use and applications of Total Station. Reconnaissance, Preliminary and Detailed survey for road project. 4 Hr								
	Section – II								
Photogrammetry:									

Unit 4	Introduction, principle, uses Aerial camera, aerial photographs Definitions,	
Omt 4	scale of vertical and tilted photograph Ground coordinates, ground control, examples on scale, number of photographs, Displacements and errors,	5 Hrs
	Procedure of aerial survey, Examples on flight planning, Photomaps and	
	mosaics., Stereoscopes, Parallax bar, Drone Survey	
	Curves:	
Unit 5	Significance of curves and curve setting, Type of horizontal curve, elements of	7 Hrs
	Simple, Compound curve, Transition curve introduction only, setting out of	
	simple curve by linear and angular methods. Vertical curves – types, lengths of	
	vertical curves.	
	Modern methods of surveying:	
Unit 6	Remote sensing – Definition, relevance, types, electromagnetic radiation and	
	energy sources and its characteristics, applications to civil engineering.	6 Hrs
	GPS – basic principles, GPS segments, receivers, applications in survey, DGPS	0 1115
	GIS – Terminology, advantages, basic components of GIS, data types, GIS	
	analysis, applications of GIS software	
	• · 11	
	LIDAR, GNSS- Introduction	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	applicab	le
													PSO1	PSO2	PSO3
CO1	1	2			1								2		
CO2	1	2	1	2									1		
CO3	1	2											1		
CO4	1	1	2	2	2								1		
CO5	1	2	3	2	1										
CO6															

Te	xt Books
1	Surveying and Levelling Vol. I and Vol. II by T. P. Kanetkar and S.V.Kulkarni, Pune Vidyarthi Griha Prakashan.
2	Surveying and Levelling - R. Agor, Khanna Publishers, New Delhi
3	Surveying and Levelling by N. N. Basak, Tata McGraw Hill.
4	Surveying, Vol. I & II by S. K. Duggal, TataMc-Graw Hill.
Re	ference Books
1	Surveying and Levelling by Subramanian, Oxford University Press.
2	Surveying, Vol. I & II by Dr. B. C. Punmia, Ashok K. Jain, Arun K. Jain, Laxmi Publications.
3	Principles of Surveying. Vol. I by J. G. Olliver, J. Clendinning - Van Nostrand Reinhold.
4	Elements of Photogrammetry - Paul R. Wolf, McGraw Hill Publication
5	Remote sensing and Geographical Information System- A. M. Chandra and S. K. Ghosh, Narosa Publishing House

6	Advanced Surveying -Total Station, GIS and Remote Sensing – Satheesh Gopi, R. Sathikumar and N. Madhu, Pearson publication
We	b Links/ Video Lectures
1	https://nptel.ac.in/courses/105103176
2	https://archive.nptel.ac.in/courses/105/104/105104100/
3	https://archive.nptel.ac.in/courses/105/107/105107218/
4	https://archive.nptel.ac.in/courses/105/107/105107121/

23UGPCC-CE403-CONCRETE TECHNOLOGY

Lectures: 2 Hrs/WeekEvaluation SchemeCredit: 2ISE : 40 MarksTutorials: ---ESE : 60 Marks

Course Objectives: The objective of the course is to

- 1. To study materials used in concrete production.
- 2. To understand process of concrete manufacturing and to study properties of fresh concrete.
- 3. To study relationship between compressive strength and tensile strength.
- 4. To study mix design of concrete by using IS code method and ACI method
- 5. To study different Chemical Admixtures
- 6. To study different types of special concrete and their manufacturing.

Course	Course Outcomes:								
COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy							
CO1	Impart knowledge of physical properties of ingredients of concrete and their effect on strength and durability.	Knowledge Understand							
CO2	Explain the fundamentals of process of making good quality concrete and its elastic properties.	Understand Apply Evaluate							
CO3	Understand the factors affecting properties of concrete.	Understand Evaluate							
CO4	Design the concrete mix proportion as per Indian standard code of practice.	Evaluate							
CO5	Demonstrate Non Destructive Testing (NDT) and evaluate quality of existing concrete.	Apply Evaluate							
CO6	Understand different types of concrete and their applications.	Knowledge Apply							

Description:

Life of the Civil Components is greatly influenced by the Load and material properties So analysis of load and mechanical properties identification is very important task to select the appropriate material, One should know about required properties for specified task. This course deals with different engineering material and their properties. And several analysis methods

Prerequisites:	1:	Basics civil engineering				
Trerequisites.	2:	Building Construction & Drawing				
C						

Section –	

Unit 1	Cement: Manufacturing process of cement, chemical composition, grades of cement, hydration, types of cement, Tests for cement: fineness, Standard consistency, setting time, soundness and compressive strength. Aggregates: classification, requirements, Tests for coarse aggregates: specific gravity, grading of aggregate, Flakiness index, Elongation Index, Impact value, abrasion value, crushing value. Tests for fine aggregates: specific gravity, sieve analysis, fineness modulus. Alkali aggregate reaction, bulking of sand, Artificial and Recycled aggregate. Water: general requirements, quality of water	7 Hrs
Unit 2	Workability: Factors affecting, different tests for measurement of workability. Segregation, bleeding. Manufacturing process of concrete: batching, mixing, transportation, compaction, curing of concrete, curing methods.	6 Hrs
Unit 3	Hardened concrete: Strength of concrete: w/c ratio, gel/space ratio, gain of strength with age, maturity concept of concrete, effect of maximum size of aggregate on strength. Test on hardened concrete: compressive strength, Split tensile strength test, comparison of compressive strength between cube test and cylinder test, flexural strength. Relation between compressive and tensile strength. Definition and factors affecting creep and shrinkage. Nondestructive testing: Schmidt's rebound hammer, Ultrasonic pulse velocity method.	8 Hrs
	Section – II	
Unit 4	Admixtures in concrete: Chemical Admixtures: Plasticizers, Super plasticizers, Retarders, Air entraining agents, IS 9103Specifications Mineral Admixtures: Fly ash, Silica Fume, GGBS, Rice husk ash, metakaolin	5 Hrs
Unit 5	Concrete Mix Design: Objectives of mix design, different methods of mix design, factors affecting mix proportions, quality control of concrete, statistical methods, acceptance criteria, Numerical on mix design by ACI 211.1-1991, IS 10262-2009 and IS 456-2000. Mix design of fly ash concrete by IS 10262 – 2009.	8Hrs
Unit 6	Special Concretes and Durability of concrete: Special Concretes: Light weight concrete, Polymer modified concrete, concept of fibre reinforced concrete, High performance concrete, Pumpable concrete, Roller compacted concrete, Self compacting concrete, Decorative concrete, Green Concrete. Durability of concrete: Significance, Permeability and Durability, Chemical Attack, Sulphate attack, Attack by Seawater, Acid attack, Chloride attack, Carbonation of concrete and its determination.	6Hrs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	`applicab	le
													PSO1	PSO2	PSO3
CO1	3	1	1			2					1	1	2	1	
CO2	2	2				2	1		-			1	1	1	
CO3	3				2	2		1				1	1		

CO4	1	2	1	3	1	2	-	1	-		 1	3		
CO5	1	2	1		2	1					 	1	2	
CO6	2	1				1	1			1	 1		1	

Tex	xt Books							
1	Shetty, M.S., Concrete Technology, S. Chand Publication.							
2	Gambhir, M.L., Concrete Technology, Tata McGraw Hill.							
Ref	ference Books							
1	A. M. Neville, J. J. Brooks, "Concrete Technology" Pearson Education India							
2	A. M. Neville, "Properties of Concrete", Pearson Education India.							
3	R.S. Varshney, "Concrete Technology", Oxford and IBH.							
4	P. Kumar Mehta, "Microstructure and properties of concrete", Prentice Hall.SP-26.							
IS co	IS codes							
1	IS: 10262 - 2009, Recommended guidelines for Concrete Mix Design.							
2	IS: 456- 2000, Indian Standard Plain and Reinforced Concrete.							

23UGPCC-CE404-HYDRAULICS

Lectures: 2 Hrs/WeekEvaluation SchemeCredit: 1ISE : 40 MarksTutorials: ---ESE : 60 Marks

Course Objectives: The objective of the course is to

- 1. To study uniform and non-uniform flow in open channel.
- 2. To study velocity and discharge measurement devices.
- 3. To study impact of jet, Pumps and turbines.

Course Outcomes:

COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy
CO1	Provide students with basic knowledge of fluid properties and utilizing principles developed in fluid mechanics	Knowledge Understand
CO2	Develop the principle and equation for pressure flow and momentum analysis.	Understand
CO3	Provide the students with the analytical knowledge of pressure and velocity distribution in an open channel in order to solve practical problems	Understand
CO4	Illustrate and develop the equations and design principles for open channel flows, including sanitary and storm sewer design and flood control hydraulics.	Apply Evaluate

Description:

The material in this course will provide the student with a fundamental background in the statics and dynamics of fluids, laws of fluid mechanics and energy relationships. The basic conservation laws of mass, momentum and energy are analyzed in control volume and differential form. The student will learn how to choose the right formulation for fluid flow problems. The student will also learn how to analyze practical fluid flow phenomenon and apply basic principles / concepts in fluid mechanics to solve real life situations.

Prerequisites:	1:	Applied Mechanics
Trerequisites.	2:	Engineering Mathematics
	3:	Engineering Physics
	4:	Basic Civil Engineering

1,	6Hrs
d nt	
dal fect ng	6Hrs
	fect

	Gradually Varied Flow (GVF):	
Unit 3	Depth Energy Relationship in Open Channel Flow: Specific Energy Curve Specific Force (Definition and Diagram) Gradually Varied Flow (GVF): Definition, Classification of Channel Slopes, Dynamic Equation of GVF (Assumption and Derivation), Classification of GVF Profiles, Practical Examples.	6 Hrs
	Section – II	
	Pumps:	
Unit 4	Introduction, Types of Pumps Centrifugal Pump: Classification, Performance Characteristics, Common Pump Troubles and Remedies, Net Positive Suction Head (NPSH). Introduction to Different types of pump used in construction Industry. Valve: Types of Valve and its applications.	6Hrs
	Rapidly Varied Flow (RVF):	
Unit 5	Rapidly Varied Flow (RVF): Definition, Hydraulic Jump- Phenomenon, Conjugate Depth Relationship, Characteristics, Hydraulic Jump (uses, types, location and application), Hydraulic Jump as an Energy Dissipater.	6Hrs
	Hydraulic Turbines:	
Unit 6	Hydraulic Turbines: Classification of Turbines- Pelton, Francis and Kaplan Turbine Selection of Type of Turbine, Concept of Draft Tube. Hydropower plant: Introduction, Schematic layout of Hydropower plant. Power generation and its distribution.	6Hrs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	Ií	applicab	le
													PSO1	PSO2	PSO3
CO1	1	2				2						1			
CO2		1	2		1	2		-1-	-1			-1-	-1-		-1
CO3	2	1		1								1			
CO4		2		2	1	1									

Tex	xt Books
1	Fluid Mechanics – A.K. Jain – Khanna Pub., Delhi.
2	Open Channel flow – Rangaraju – Tata McGraw-Hill Pub. Co., Delhi.
3	Fluid Mechanics – K. Subramanyam – Tata McGraw-Hill Pub. Co., Delhi.
_	Fluid Mechanics – Hydraulic and Hydraulic Mechanics -Modi / Seth – Standard Book
	House, New Delhi.
5	Fluid Mechanics and hydraulic machine-R.K.Bansal, Laxmi Pubication.

Ref	erence Books
1	Fluid Mechanics – Streeter-McGraw-Hill International Book Co., Auckland.
2	Flow in open channel – V. T. Chaw - McGraw-Hill International Book Co., Auckland.
3	Fluid Mechanics – K. L. Kumar – Eurasia Publication House, Delhi.

23UGMDM2-CE405T-DISASTER MANAGEMENT

Lectures: 1 Hrs/WeekEvaluation SchemeCredit: 2ISA : 50 Marks

Tutorials: 1

Course Objectives: The objective of the course is to

- 1) To provide basic conceptual understanding of disasters.
- 2) To understand approaches of Disaster Management.
- 3) To build skills to respond to disaster

Course Outcomes:

COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy
CO1	Classify and Quantify the disaster.	Knowledge Understand
CO2	Communicate and Response to the various organizations.	Apply Knowledge
CO3	Plan and Execute rescue operation in the disaster situation.	Apply

Description:

The course is intended to provide a general concept in the dimensions of disasters caused by nature beyond the human control as well as the disasters and environmental hazards induced by human activities with emphasis on disaster preparedness, response and recovery.

activities w	in emphasis on disaster preparedness, response and recovery.										
Duomo arri	1: Basics of Disaster management.										
Prerequi	2: Role of various organizations.	Role of various organizations.									
	Introduction on Disaster										
	Different Types of Disaster :										
Unit 1	A) Natural Disaster: such as Flood, Cyclone, Earthquakes,	5Hrs									
	Landslides etc.										
	B) Man-made Disaster: such as Fire, Industrial Pollution, Nuclear Disaster,										
	Biological Disasters, Accidents (Air, Sea, Rail & Road), Structural failures										
	(Building and Bridge), War & Terrorism etc.										
	Causes, effects and practical examples for all disasters.										
	Disaster Preparedness.										
Unit 2	Preparedness-										
Unit 2	1. Disaster Preparedness: Concept and Nature.										
	2. Disaster Preparedness Plan.										
	3. Prediction, Early Warnings and Safety Measures of Disaster.										
	Role and Responsibilities of various bodies in Disaster Preparedness	I									
Unit 3	1. Information, Education, Communication and training.										
	2. Government, International and NGO Bodies.										
	3. Information Technology.										
	4. Engineers.										

	1	Assignments on each unit above.	3
Tutorials	2	Training and drills for disaster preparedness, Awareness generation program.	4
	3	Basic principles of disasters management, Disaster Management cycle, Disaster management policy, National and State Bodies for Disaster Management.	4
	4	Case Study of one Important disaster.	4

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	I	f applica	ıble
													PSO 1	PSO 2	PSO 3
CO1	1	-	-	-	1	2		1							
CO2	1	-	-	-	-	2				2					
CO3	1	-	-	-	-	2	7		2						

Tex	xt Books
1	Disaster Management Guidelines, GOI-UND Disaster Risk Program (2009-2012)
2	Damon, P. Copola, (2006) Introduction to International Disaster Management, Butterworth Heineman.
3	Gupta A.K., Niar S.S and Chatterjee S. (2013) Disaster management and Risk Reduction, Role of Environmental Knowledge, Narosa Publishing House, Delhi.
4	Murthy D.B.N. (2012) Disaster Management, Deep and Deep Publication PVT. Ltd. New Delhi.
5	Modh S. (2010) Managing Natural Disasters, Mac Millan publishers India Ltd.

23UGOE1-CE406-ENERGY AND ENVIRONMENT

Lectures : 2 Hrs/Week **Evaluation Scheme**

 Credit
 : 2
 ISE : 40 Marks

 Tutorials
 : -- ESE : 60 Marks

Course Objectives: The objective of the course is to

- 1) To understand various sources of energy with respect to quantity and use
- 2) To describe and design the various Building and industrial energy efficient units.
- 3) To learn the special energy requirements and its methods of applications
- 4) To learn various sources of Air pollution, Noise Pollution and Solid waste its treatment and safe disposal.
- 5) Measurement of pollution of Air, Noise, and Solid waste.

Course Outcomes (CO):							
COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy					
CO1	Describe the various sources of energy with respect to quantity.	Knowledge					
		Understand					
CO2	Describe and design the various energy efficient units.	Understand					
CO3	Illustrate the special energy requirement and its use in residential and industrial buildings	Understand					
CO4	Know the various sources of Air pollution, Noise Pollution and Solid waste its treatment and safe disposal.	Understand					
CO5	Measurement of strength of Air pollutants, sound pollution and solid	Apply					
	waste	Evaluate					

Description:

Energy and Environment is focused on analysing and understanding the quality and quantity of Energy required for various types of buildings and its audits. Moreover, the awareness of Air pollution, Noise Pollution and Solid waste generates its pollution intensity, limits laws, and various methods of testing and reduction of pollution. This course will enhance the knowledge about green energy and its applications. The future of globe to reduce use of non-renewable energy and application of green energy is achieved through this course. The environmental pollution impact can be controlled through various techniques and their implementation.

can be controlled allough various techniques and then imprementation.											
	1 Energy requirements for human activities										
Prerequis	ites	2 Effects of Air pollution and noise pollution on Human and his enviro									
		3 Solid wastes and its nuisance									
	-	4	MPCB, CPCB and its standards								
Section – I											
			Section – I								
			Section – I Air Pollution								

Unit 2	Noise Pollution								
	Noise characteristics and measurements, Levels of noise and standards, control.	4 Hrs							
	Solid Waste Management								
Unit 3	Solid wastes Definition, Types, Sources, Characteristics, Functional outlines-storage, Collection, Processing techniques, Methods of treatment of solid waste-Composting, Incineration, Pyrolysis and Sanitary land filling.	7Hrs							
	Section – II								
	Green Energy and Environment:								
Unit 4	Introduction to Green Buildings, Aspects of green energy and the environment, such as bio-fuel and bio-energy, energy storage and networks, Catalysis of sustainable development	6 Hrs							
	Clean Energy and its uses								
Unit 5	Reduced air pollution and greenhouse gas emissions, Lower consumer energy bills, Enhanced state and local economic development and job creation, Improved energy system reliability and security. Energy audits and green building rating	5 Hrs							
	Environmental Problems and Energy:								
Unit 6	Different types of Energy – Conventional and non-conventional, The environmental problems directly related to energy production and consumption include air pollution, climate change, water pollution, thermal pollution, and solid waste disposal. The emission of air pollutants from fossil fuel combustion is the major cause of urban air pollution.	7 Hrs							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	f applicab	le
	\												PSO 1	PSO 2	PSO 3
CO 1	1	2	1	-	1	-1			1						
CO 2	1	2	1	2	ı	1			1						
CO 3	1	2	-	-	-			-							
CO 4	-	-	2	2	2										
CO 5	1	2	2	-	-	1			1						
CO 6	1	2	-	-	1										

	Text Books
1	Sewage Disposal and Air Pollution Engineering - Garg S.K., [Khanna Publishers]
2	Solid Waste Management in Developing countries - Bhide A.D. and SundersenB.B.[Indian
	National Scientific Documentation Centre, New Delhi]
3	Air Pollution- Rao M.N. and Rao H.V.N. [Tata McgrawHill]

4	Environmental Noise Pollution: Noise Mapping, Public Health, and PolicyPaperback – Import						
	by Enda Murphy (Author), Eoin A King (Author)						
	Reference Books						
1	Manual on sewerage & sewage Treatment published by Ministry of Urban Development Govt. of India Msy-2000. 35 PDOP-4-59-85-97, Ministry of Urban development						
2	Manual on Municipal Solid Waste Management- Ministry of Urban Development Govt. of India						

23UGVSEC-CE407 L-COMPUTER AIDED DESIGN AND DRAWING

Lectures: 1 Hrs/WeekEvaluation SchemeCredit: 2ISA : 25 Marks

Practical : 2 Hrs/Week

Course Objectives: The objective of the course is to

- 1. To use of Computer Aided Drawing (CAD) for civil engineering.
- 2. To learn 2D commands of CAD.
- 3. To develop drawing using CAD.

Course Outcomes:

COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy
CO1	Describe use & commands of CAD for civil engineering.	Remember, Understand
CO2	Explain edit commands of CAD.	Understand
CO3	Explain view commands of CAD.	Understand
CO4	Explain modify commands of CAD.	Understand
CO5	Illustrate use of layers of CAD.	Understand
CO6	Develop drawing for building by using CAD software.	Apply

Description:

Drawing is important part of any engineering work. For accuracy, repetitive or speedy work, addition or alteration work, we can use computers with different software installed in it. Various companies like Autodesk, ZW etc. are provided CAD software which is very useful in civil engineering. Student must have knowledge about required commands & drafting techniques in CAD.

must have k	nowle	dge a	about required commands & drafting techniques in CAD.								
_		1: Basic rules for engineering drawing.									
Prerequisites:		2:	Common usage of computer.								
		3:	Components of building along with rules & regulations.								
	Intr	odu	ction to Computer Aided Drawing (CAD):								
Unit 1	Introduction to CAD, history, use, Basic commands to draw 2D objects like, point, line, circle, ellipse, polygon etc.										
	Editing commands:										
Unit 2	Erase, extension, break, trim, fillet, scale etc.										
TI 14 0	Viewing commands:										
Unit 3	Zoom, pan, mirror, rotate, move, block, offsetting etc.										
	Mod	Modify:									
Unit 4	Draw & Modify toolbars for CAD Software.										
Unit 5	Lay	ers:									

	Use of layers in 2D drawing, Annotation and Layers toolbars any advance CAD Software.	2 Hrs
	Develop plan for Building:	
Unit 6	Develop different plans for any type of building by using CAD software.	2 Hrs

NOTE: For practical, individual student must practice & submit unit wise work given by subject teacher in lab on separate computer.

Mapping of Pos & Cos:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	I	f applic	able
													PSO 1	PSO 2	PSO 3
CO1	2	1	1	1	3	2	1	1	2	3	2	2	3	1	2
CO2	1				2					2	2	2	2		1
CO3	1				2					2	2	2	2		1
CO4	1				2					2	2	2	2		1
CO5	1				2					2	2	2	2		1
CO6	2	1	1	1	3	2	1	1	2	3	2	2	3	1	2

Ref	Reference Books							
1	"AutoCAD" – David Frey, BPB Sybex Publications.							
2	"AutoCAD" – George Omura.							
We	b Links/ Video Lectures							
1	https://nptel.ac.in/courses/112104031							
2	https://www.youtube.com/results?search_query=basics+of+autoCAD							
3	https://classroom.google.com/c/MzY4OTQwMjcwNzI1							

23UGEEC2-CE409-HUMAN RESOURCE MANAGEMENT

Lectures : 2 Hrs/Week **Evaluation Scheme:** Credit : 2 **ISA**: 25 Marks

Course Objectives: The objective of the course is to

- 1. Understand meaning scope and objectives human resource management & its planning.
- 2. Develop skills in recruitment, selection, training & compensation process.
- 3. Understand job evaluation and learn about employee welfare & IHRM.

Course Outcomes:

COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy
CO1	Define scope, objectives, need of human resource management.	Remember
CO2	Review and explain Methods of human resource planning.	Understand
CO3	Describe the methods of recruitment and selection process.	Remember
CO4	Explain methods of training and compensation management.	Understand
CO5	Observe job evaluation method and process.	Understand
CO6	Identify different labour laws and understand concept of IHRM.	Remember Understand

Description:

Human Resource management (HRM) plays important role in each organization. Students should have basic knowledge about HRM before the completion of his/her graduation. This subject deals with Introduction to HRM, Planning, Recruitment, and Training of human personnel. Also it focuses on selection and compensation management of employees. It adds insight in to job evaluation, employee welfare & concept of International Human Resource management. (IHRM)

Prerequisites:	1:	Basic knowledge of business concepts, knowledge of organizational behavior.		
rerequisites.	2:	Understanding of human behavior psychology and sociology in HRM.		
	3:	Strong written and verbal communication skills.		
	4:	Knowledge of relevant laws, ethics and social responsibility.		
Section – I				

	Section – 1				
	Introduction To Human Resource Management.				
Unit 1	Introduction and meaning of HRM, Scope and Objectives of HRM, Need of HRM in the context of Globalization.	4Hrs			
Unit 2	Human Resource Planning.				
	Introduction and Definition of HRP, Need and objectives of HRP, Methods of HRP: forecasting demand for human resources, manpower inventory, and formulating HR plans.				
Unit 3	Recruitment and Selection.				
	Definition, internal and external sources of recruitment, Methods of Recruitment: Direct, Indirect and Third party methods. Selection: Definition and Process of selection.	4Hrs			
	Section – II				

	Training and Compensation.								
Unit 4	Definition, Need of training, Methods of training: On job and Off job training, Concept of Compensation, Compensation management process.								
	Job Evaluation.								
Unit 5	Meaning of job evaluation, Objectives. Process of job evaluation, Methods of Job evaluation: Ranking, Classification, Factor comparison method.	4Hrs							
	Employee Welfare & IHRM.								
Unit 6	Labour laws: Main features of Payment of wages act, Workmen's compensation act, Factory act, Trade Union Act, Concept of International Human Resource management (IHRM).	4Hrs							

• Note: Prepare at least one Assignment on each unit separately for in-semester Assessment (ISA) work.

Mapping of POs & COs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	applicab	le
													PSO1	PSO2	PSO3
CO1	1	-	-	-	-	2	-	1	ı	-	1	-	1	ı	-
CO2	1	-	-	-	-		1	-	1	-	ı	-	1	ı	-
CO3	1	-	-	-	-	1	-	-	1	-	1	-	1	2	-
CO4	1	-	-	-	-	1	-	-	ī	-	1	-	ı	ı	-
CO5	1	-	-	-	-	1	-	1	ı	-	1	-	2	1	-
CO6	1	-	-	-	-	1	-	_	-	1	-	1	-	1	-

Tex	xt Books					
1	Personnel/human Resource Management <u>Terry L. Leap</u> , <u>Michael D. Crino</u> , Macmillan Publishing Company, 1993.					
2	K. Aswathappa, _Human Resource Management', Tata Mc Graw Hill , New Delhi.					
3	Loosemore M., Dainty A., Lingard H., "Human Resource Management in Construction Projects", Spon Press, 2003					
4	Venkataratnam & Srivastava, _ Personnel Management and Human Resources', Tata Mc Graw Hill, New Delhi.					
Ref	Reference Books					
1	Personnel Management: Managing Human Resources, <u>Paul S. Greenlaw</u> , <u>John P. Kohl</u> Harper & Row, 1986					
2	NICMAR Publication on - HRD in the Construction Industry - papers and proceedings of the 5th National HRD round table in the Construction Industry, Pune - March - 2000.					
We	eb Links/ Video Lectures					
1	http://nptel.ac.in/					
2	http://www.shrm.org/					
3	http://www.hrm.org/					

23UGVEC2-CE410-ETHICS AND MORAL PHOLOSOPHY

Lectures: 2 Hrs/WeekEvaluation SchemeCredit: 2ISA : 25 Marks

Course (Objectives: The objective of the course is						
1	To familiarize the students with the philosophy subject, its branches, problems, methods and also it provides a wider canvas about tackling day-to-day problems in a larger perspective.						
2	To introduce the basics of the science of logic and reasoning, this is the mos of developing logical abstract and critical thinking in students.	t effective means					
3	To introduce the ethical philosophies propounded in the different philosophi	ical systems.					
4	To give an insight into the nature of ethics, moral notions, and basic moral theories as propounded by ethical philosophers and also deal with the problems of applied ethics.						
5	To understand the importance of ethics in the professional practice of engineering.						
6	To foster a sense of responsibility towards society and the environment.						
Cours	Course Outcomes:						
COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy					
CO1	Understanding of different ethical philosophies and their influence on life. Understanding right, wrong, good and bad and understanding moral principles and their application in everyday life.	Knowledge, Understand					
CO2	Apply philosophical methods in the abstraction of ideas, their explanation, and interpretation.	Understand					
CO3	Knowledge of contemporary methods of philosophical inquiry and their applications.	Knowledge, Apply					
CO4	Identify an argument in a passage of ordinary text, including identifying the premises and conclusions and distinguishing them from extraneous information.	Understand					
CO5	Ability to understand reality from different perspectives and understand the various ancient and contemporary issues of moral philosophy.	Apply Evaluate					
CO6	Apply basic ethical concepts and approaches to solving practical problems in everyday life.	Understand, Apply					

Description:

This course is designed to equip you with the skills to critically and creatively analyze the ethical dimensions of your own actions and the broader world. You will engage with moral dilemmas through the lens of various philosophical frameworks, including analytical philosophy, philosophical thought, pragmatism, and phenomenology. The curriculum will explore the extensive historical and cultural traditions that address complex moral issues, utilizing epics, parables, religious doctrines, and other methodologies. Furthermore, you will learn to apply these ethical theories to contemporary global challenges.

Course Outline:

	Section – I									
	Introduction to Philosophy and Ethics									
Unit 1	Introduction to philosophy, Philosophical reasoning, Induction and abduction. Definition and scope of ethics, Difference between ethics, morals, and laws, Ethical theories, Value ethics, Importance of ethics in engineering.									
	Comprehending the meaning and purpose of the surrounding and events									
Unit 2	Nature of reality, skepticism, empiricism, The problem of 'evil' in the practical world, Essentialism, Existentialism, Nihilism, Absurdism.	6 Hrs								
	Moral dilemmas and their resolutions									
Unit 3	Concept of Justice and Rights, Determinism and free will, Compatibilism, Utilitarianism, Theory of natural law.	6 Hrs								
	Awareness in the era of AI									
Unit 4	Personal identity and The ship of Theseus, Artificial Intelligence and personhood, Science and pseudoscience, Ethical implications of emerging technologies, Privacy, security, and ethical concerns in IT and AI.	6 Hrs								
	Philanthropic pursuits									
Unit 5	Poverty and Response, Philanthrophy, Corporate social responsibility, Good life, Eudaimonia, Sustainability and environmental ethics.	6 Hrs								

Mapping of POs & COs:

													applicab	le	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1								1				1			
CO2										2			-		
CO3												1	1	1	1
CO4										2	2		1	1	1
CO5							2			2					
CO6							2	1							

Mapping of Course Objectives & Course Outcomes:

	CO1	CO2	CO3	CO4	CO5	CO6
1	~	\	ı	ļ	ļ	
2	1	√	✓	√	1	
3	1	1	\	1	✓	
4	>	>	1	>	\	✓
5	✓	1	1	1	1	1
6	1					1

Tex	xt Books
1	Ethics: The Fundamentals, by Julia Driver
2	Rachels, J., 2007. The Elements of Moral Philosophy. 5th ed. Boston; London: McGraw Hill. Benn, P., 2002. Ethics. London: Routledge.
3	Ethics: History, Theory, and Contemporary Issues, by Steven Cahn & Peter Markie
4	Singer, P., ed., 1993. A Companion to Ethics. Oxford: Blackwell.
Ref	erence Books
1	The Nicomachean Ethics, by Aristotle
2	Groundwork of the Metaphysics of Morals, by Immanuel Kant
We	b Links/ Video Lectures
1	John Gordon¿s website: http://www.glaucon.pwp.blueyonder.co.uk
2	Crash Course Philosophy https://www.youtube.com/watch?v=BNYJQaZUDrI&list=PL8dPuuaLjXtNgK6MZucdYldNkMybYIHKR
3	NPTEL: Moral Thinking: An Introduction to Value and Ethics
	https://www.youtube.com/watch?v=XiN8iqJGb48&list=PLFW6lRTa1g83uYgRiZEy_F4pzedPNWpew
4	NPTEL: Ethics
	https://www.youtube.com/watch?v=1xFZ7ZVVJeA&list=PLXcPnJsWbdxujUIptbSdeJXC0Jd-
	<u>InxFG</u>

23UGPCC-CE402 LP-ADVANCED SURVEYING

Practicals: 2 hrs / week **Examination Scheme:**

Credits: 1 ISA: 25 Marks
POE: 25 Marks

Course Objectives: The objective of the course is to

1) To Equip students with knowledge of various advanced surveying methodologies used in large-scale survey projects.

2) To emphasize how modern instruments and technologies have transformed survey approaches, while maintaining the core principles of surveying.

Course Outcomes:

COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy
CO1	Adopt the principles of advanced surveying instruments	Understand Apply
CO2	Formulate triangulation stations, flight planning and ground control points	Understand Apply
CO3	Show effectiveness of modern surveying instruments to improve accuracy and to save time and for surveying operations.	Apply Analyze
CO4	Evaluate the setting out of various curves	Evaluate
CO5	Appreciate the use of modern techniques for surveying and mapping.	Understand Evaluate

Practicals:

Sr. No.	Practical/ Experiment/Tutorial Topic	Hrs.	Bloom's Taxonomy
1	Determination of tacheometric constants	2	Apply
2	Determination of grade of a given line.	2	Evaluate Apply Evaluate
3	Determination of area of polygon.	2	Apply Evaluate
4	Experiments using total station – any two	2	Knowledge, Analyze
5	Setting out of simple curve- one linear and one angular method	2	Knowledge, Analyze
6	Use of stereoscope	2	Knowledge Analyze
7	Use of GPS	2	Knowledge Analyze
7	Project drawings.	4	Knowledge Apply
	Survey Project		***

1	Road project – at least 1000m.	4	Apply Evaluate
2	Radial contouring.	4	Apply Evaluate

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	applicab	le
	,												PSO1	PSO2	PSO3
CO1	1	2			1								2		
CO2	1	2	1	2					1				1	-	
CO3	1	2											1		
CO4	1	1	2	2	2				1				1	-	
CO5	1	2	3	2	1										
CO6									1				1	-1	

Tex	at Books
1	Surveying and Levelling Vol. I and Vol. II by T. P. Kanetkar and S.V.Kulkarni, Pune Vidyarthi Griha Prakashan.
2	Surveying and Levelling - R. Agor, Khanna Publishers, New Delhi
3	Surveying and Levelling by N. N. Basak, Tata McGraw Hill.
4	Surveying, Vol. I & II by S. K. Duggal, TataMc-Graw Hill.
Ref	erence Books
1	Surveying and Levelling by Subramanian, Oxford University Press.
2	Surveying, Vol. I & II by Dr. B. C. Punmia, Ashok K. Jain, Arun K. Jain, Laxmi Publications.
3	Principles of Surveying. Vol. I by J. G. Olliver, J. Clendinning - Van Nostrand Reinhold.
4	Elements of Photogrammetry - Paul R. Wolf, McGraw Hill Publication
5	Remote sensing and Geographical Information System- A. M. Chandra and S. K. Ghosh, Narosa Publishing House
6	Advanced Surveying -Total Station, GIS and Remote Sensing – Satheesh Gopi, R. Sathikumar and N. Madhu, Pearson publication
We	b Links/ Video Lectures
1	https://nptel.ac.in/courses/105103176/
2	https://archive.nptel.ac.in/courses/105/104/105104100/
3	https://archive.nptel.ac.in/courses/105/107/105107218/
4	https://archive.nptel.ac.in/courses/105/107/105107121/

23UGPCC-CE403 LP-CONCRETE TECHNOLOGY LAB WORK

Practicals: 2 hrs / week **Examination Scheme:**

Credits: 1 ISA: 25 Marks
OE: 25 Marks

Course Objectives: The objective of the course is to

1. Impart knowledge of physical properties of ingredients of concrete and their effect on strength and durability.

2. Understand the factors affecting properties of concrete.

Course Outcomes:

COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy
CO1	Impart knowledge of physical properties of ingredients of concrete and their effect on strength and durability.	Knowledge Understand
CO2	Explain the fundamentals of process of making good quality concrete and its elastic properties.	Understand Apply Evaluate
CO3	Design the concrete mix proportion as per Indian standard code of practice.	Evaluate
CO4	Demonstrate Non Destructive Testing (NDT) and evaluate quality of existing concrete.	Apply Evaluate

Practicals:

Sr. No.	Practical/ Experiment/Tutorial Topic	Hrs.	Bloom's Taxonomy
1	To determine fineness of cement by Sieve analysis and/or Blaine's air permeability method.	2	Knowledge
2	To determine the standard consistency of cement using Vicat's apparatus.	2	Knowledge Apply
3	To determine initial and final setting time of cement.	2	Knowledge Apply
4	Determination of soundness of cement by Le- Chatelier's apparatus and/or Auto Clave test.	2	Analyze
5	To determine compressive strength of cement.	2	Analyze
6	Determination of particle size distribution of fine, coarse and all in aggregate by sieve analysis (grading of aggregate).	2	Analyze
7	Determination of specific gravity of fine aggregates.	2	Analyze
8	Determination of specific gravity and water absorption of coarse aggregates.	2	Analyze
9	To determine flakiness and elongation index of coarse aggregates.	2	Analyze
10	To determine workability of fresh concrete by using slump cone.	2	Analyze Apply

11	To determine compaction factor for workability of fresh concrete.	2	Analyze Apply
12	To determine workability of fresh concrete by using Vee Bee Consitometer.	2	Analyze Apply
13	Split tensile strength test on concrete cylinder	2	Analyze Apply
14	Nondestructive test on concrete by: Rebound Hammer Test, Ultrasonic Pulse Velocity Test.	2	Analyze Apply
15	Tests for compressive strength of concrete cubes for M20 or M30 (ACI 211.1-91, IS 10262- 2009 and IS 456 2000).	2	Analyze Apply

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	applicab	le
													PSO1	PSO2	PSO3
CO1	3	1	1			2					1	1	2	1	
CO2	2	2				2	1					1	1	1	
CO3	1	2	1	3	1	2		1		1		1	3	-	
CO4	1	2	1		2	1		1		1			1	2	

Tex	at Books
1	Shetty, M.S., Concrete Technology, S. Chand Publication.
2	Gambhir, M.L., Concrete Technology, Tata McGraw Hill.
Ref	erence Books
1	A. M. Neville, J. J. Brooks, "Concrete Technology" Pearson Education India
2	A. M. Neville, "Properties of Concrete", Pearson Education India.
3	R.S. Varshney, "Concrete Technology", Oxford and IBH.
4	P. Kumar Mehta, "Microstructure and properties of concrete", Prentice Hall.SP-26.
IS co	odes
1	IS: 10262 - 2009, Recommended guidelines for Concrete Mix Design.
2	IS: 456- 2000, Indian Standard Plain and Reinforced Concrete.

23UGPCC-CE404 LP-HYDRAULICS LAB

Practicals: 2 hrs / week **Examination Scheme:**

Credits: 1 ISA: 25 Marks

POE: 25

Course Objectives: The objective of the course is to

- 1. To study uniform and non-uniform flow in open channel.
- 2. To study velocity and discharge measurement devices.
- 3. To study impact of jet, Pumps and turbines.

Course Outcomes:

COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonom v
CO1	Provide students with basic knowledge of fluid properties and utilizing principles developed in fluid mechanics	Knowledge Understand
CO2	Develop the principle and equation for pressure flow and momentum analysis.	Understand
CO3	Provide the students with the analytical knowledge of pressure and velocity distribution in an open channel in order to solve practical problems	Understand
CO4	Illustrate and develop the equations and design principles for open channel flows, including sanitary and storm sewer design and flood control hydraulics.	Apply Evaluate

Practicals:

Sr. No.	Practical/ Experiment/Tutorial Topic	Hrs.	Bloom's Taxonomy
Α.	Perform at least three experiments from the Following:		
1	Study of Specific Energy Curve for Different Discharges.	2	Knowledge, Apply
2	Calibration of Rectangular Notch.	2	Apply
3	Calibration of Rectangular sharp creasted Weir.	2	Apply
4	Calibration of Rectangular broad creasted Weir.	2	Knowledge, Analyze
5	Calibration of Ogee Weir.	2	Analyze
В.	Study of Turbines (Demonstration).	2	Analyze
C.	Study of Centrifugal Pump.	2	Analyze
D.	Case Study of hydropower plant.	2	Knowledge, Analyze

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	fapplical	ole
													PSO1	PSO2	PSO3
CO1	1	2				2						1		1	2
CO2		1	2		1	2									1
CO3	2	1		1								1		2	1
CO4		2		2	1	1									2

Te	xt Books
1	Fluid Mechanics – A.K. Jain – Khanna Pub., Delhi.
2	Open Channel flow – Rangaraju – Tata McGraw-Hill Pub. Co., Delhi.
3	Fluid Mechanics – K. Subramanyam – Tata McGraw-Hill Pub. Co., Delhi.
4	Fluid Mechanics – Hydraulic and Hydraulic Mechanics -Modi / Seth – Standard Book
	House, New Delhi.
5	Fluid Mechanics and hydraulic machine-R.K.Bansal, Laxmi Pubication.
Re	ference Books
1	Fluid Mechanics – Streeter-McGraw-Hill International Book Co., Auckland.
2	Flow in open channel – V. T. Chaw - McGraw-Hill International Book Co., Auckland.
3	Fluid Mechanics – K. L. Kumar – Eurasia Publication House, Delhi.

23UGPCC-CE411 A -ENVIRONMENTAL STUDIES

Course Objectives: The objective of the course is to

- 1. Understand the fundamental principles of environmental science and its importance.
- 2. Develop knowledge about various environmental systems and processes.
- 3. Identify environmental problems and their impact on human health and the ecosystem.
- 4. Prepare students to contribute to sustainable development and environmental protection.

Course Outcomes:

COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy
CO1	Relate the interdependency of environmental components.	Understand, Knowledge
CO2	Identify the environmental problems and prevent environmental pollution	Understand
CO3	Interpret impacts of waste on environmental components.	Understand
CO4	Analyze environmental change and its social impacts	Understand

Description:

The syllabus of Environmental Studies provides an integrated, quantitative and interdisciplinary approach to the study of environmental systems. The students of Engineering undergoing this course would develop a better understanding of human relationships, perceptions and policies towards the environment and focus on design and technology for improving environmental quality. Their exposure to subjects like understanding of earth processes, evaluating alternative energy systems, pollution control and mitigation, natural resource management and the effects of global climate change, shall help the students to bring a systems approach to the analysis of environmental problems.

environmenta	environmental problems.								
D	•4	1: Understanding of Environment Education course.							
Prerequis	sites:	2: Foster environmental awareness, values, and ethics.							
Section – I									
Unit 1	Ecosystem, Ecological Pyramids, Food chain, food web, Ecological succession, Natural Resources and Associated Problems. Forest resources, Water resources, Mineral resources, Food resources, Energy resources, Land resources Role of individuals in conservation of natural resources.								
Unit 2	Air pollution: Causes, effects, control, Air pollution controlling equipments, Air quality standards, National air quality index, vehicular emission, alternative fuels, indoor air pollution, Thermal inversions, Photochemical Smog and Acid Precipitation Noise pollution: Causes, effects, control, noise standards recommended by CPCB environmental Protection Act, Air (Prevention and Control of Pollution) Act Water (Prevention and control of Pollution) Act. Wildlife Protection Act. Forest Conservation Act and International and National efforts for Environmental Protection.								
Section – II									

Unit 3	Solid waste management, biomedical waste management, E waste, plastic waste management, Hazardous waste management, carbon footprint, Recycling of waste, Role of Central Pollution Control Board (CPCB), State Pollution Control Board, Role of NGO's	-
Unit 4	Global Warming, Ozone layer depletion, CO ₂ emission, urban problems related to energy, Alternative energy sources, Evolution of Sustainable development: timeline, Evolution of green movements in India, Disaster management: Flood, Earthquakes, Cyclones, Landslides, Draught, Tsunami etc., Swachh Bharat Mission, Role of Information technology in Environment and human health.	-

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If applicable		
													PSO1	PSO2	PSO3
CO1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	1	-	-	-	-	-	-	-	-	-	-	-	1	1	-
CO3	1	-	-	1	1	1	1	ı	ı	ı	1	-	ı	1	-
CO4	1	1	-	-	-	-	-	-	-	-	-	-	1	1	-

Tex	t Books
1	Agarwal K.C.,2001 "Environmental Biology", Nidi publication ltd., Bikaner
2	D.K.Asthana, Meera Asthana, A Textbook of Environmental Studies, S. Chand Publication Revise edition, 2006.
3	S. Deswal & A. Deswal, Basic course in environmental Studies, Dhanpat Rai Co ltd., Delhi, Second revised edition, 2009.
4	"Environmental Science" by William C. Brown, Edward J. Ziegler, and Terry L. Schulenburger
5	"Principles of Environmental Science" by William P. Cunningham and Mary Ann Cunningham
6	"Environmental Studies: A Global Perspective" by Rajiv Kumar and Anand Kumar
7	"Environmental Science: An Ecological Approach" by Richard T. Wright and Bernard J. Nebel
8	"Environmental Science for a Changing World" by Tyler Miller and Scott Spoolman