

Shree Warana Vibhag Shikshan Mandal's Tatyasaheb Kore Institute of Engineering And Technology, Warananagar

Department of Chemical Engineering

First Year M. Tech. Chemical Engineering Syllabus Structure under Autonomous Status of TKIET, Warananagar 2021-22

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar

First Year M. Tech. Chemical Engineering (Semester-I) (To be implemented from 2021-22)

				Teach	ing Sc	heme		Cred	it Schen	ne
Course Code	Category	Course Title	тн	Tut	Р	Total Contact Hours	ТН	Tut	Р	Total Credit Assigned
Ch - PCC- 1011	PCC	Advanced Momentum & Heat Transfer	3	1		4	3	1		4
Ch - PCC- 1021	PCC	Advanced Chemical Engineering Thermodynamic	3	1		4	3	1		4
Ch – PE - 1031	PE	Program Elective – I Process Modeling in Chemical Engineering	3			3	3			3
Ch - PE- 1041	PE	Program Elective-II	3			3	3			3
Ch - PE- 1051	PE	Program Elective-III	3			3	3			3
Ch - LC- 1061	LC	Advanced Separation Laboratory			4	4			2	2
Ch - SW - 1071	SW	Seminar-I			2	2			1	1
			15	02	06	23	15	2	3	20

Credit Scheme

Evaluation Scheme

Course Code	Category	Course Title					nination heme			
			ISE -I	ISE ISE -II	Avg.	ESE	TW	0	Р	Total
Ch - PCC- 1011	PCC	Advanced Momentum & Heat Transfer	40	40	40	60	25			125
Ch - PCC- 1021	РСС	Advanced Chemical Engineering Thermodynamic	40	40	40	60	25			125
Ch - PE- 1031	PE	Program Elective – I Process Modeling in Chemical Engineering	40	40	40	60				100
Ch - PE-1041	PE	Program Elective-II	40	40	40	60				100
Ch - PE-1051	PE	Program Elective-III	40	40	40	60				100
Ch - LC-1061	LC	Advanced Separation Laboratory					25	25		50
Ch - SW 1071	SW	Seminar-I					50	-		50
					200	300	125	25		650

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar

First Year M. Tech. Chemical Engineering (Semester-II) (To be implemented from 2021-22)

				T	eaching	Scheme		Cree	dit Scl	neme
Course Code	Category	Course Title	тн	Tut	Р	Total Contact Hours	тн	Tut	Р	Total Credit Assigned
Ch - PCC- 2011	PCC	Advanced Mass Transfer	3	1		4	3	1		4
Ch - PCC- 2021	PCC	Chemical Process Control	3	1		4	3	1		4
Ch - PE- 2031	PE	Program Elective-IV Modern Reaction Engg.	3			3	3			3
Ch - PE- 2041	PE	Program Elective-V	3			3	3			3
Ch - OEC- 2051	OEC	Open Elective Course	3			3	3			3
Ch - LC- 2061	LC	Analytical Laboratory			4	4			2	2
Ch - SW - 2071	SW	Seminar-II			2	2			1	1
Ch - 2081		Comprehensive Viva								
			15	02	06	23	15	02	3	20

Credit Scheme

Evaluation Scheme

Course Code	Category				E	xaminat	ion Sche	eme		
Course Coue	Category	Course Title		ISE		DOD			р	T-4-1
			ISE -I	ISE -II	Avg.	ESE	TW	0	Р	Total
Ch - PCC- 2011	PCC	Advanced Mass Transfer	40	40	40	60	25			125
Ch - PCC- 2021	PCC	Chemical Process Control	40	40	40	60	25			125
Ch - PE- 2031	РСС	Program Elective-IV Modern Reaction Engg.	40	40	40	60				100
Ch - PE- 2041	PE	Program Elective-V	40	40	40	60				100
Ch - OEC 2051	OEC	Open Elective Course	40	40	40	60				100
Ch - LC- 2061	LC	Analytical Laboratory					25			25
Ch - SW - 2071	SW	Seminar-II					50			50
Ch - 2081		Comprehensive Viva						25		25
					200	300	125	25		650

	First Year M. Tec Engineering (S		
Sr. No	Program Elective-I	Program Elective-II	Program Elective-III
1	Process Modeling in Chem. Engg.	Nano Technology	Bio Process Engineering
2	Corrosion Engg.	Green Technology	Materials Engineering
3	Polymer & Rubber Technology	Pharmaceutical Biotechnology	Process Equipment Design

	First Year M. Chemical Engi (Semester-	neering		
Sr. No	Program Elective-IV	Program Elective-V	Sr. No	Open Elective Course
1	Modern Reaction Engg.	Computational Fluid Dynamics	1	Cryogenics
2	Catalysis & Surface Phenomena	Energy Engineering	2	Design for Manufacture and Assembly
3	Down Stream Processing	Advance Separation Techniques	3	Waste To Energy.
			4	Water Power Engineering.
			5	Advanced Operating Systems
			6	Artificial Intelligence
			7	Project Management
			8	Operational Research

Shree Warana Vibhag Shikshan Mandal's Tatyasaheb Kore Institute of Engineering And Technology, Warananagar

120

eering

Second Year M. Tech. Chemical Engineering

Syllabus Structure under Autonomous Status of TKIET, Warananagar2021-2022 Tatyasaheb Kore Institute of Engineering and Technology, Warananagar

Second Year M. Tech. Chemical Engineering (Semester-III)

]	Feachi	ng Sch	eme	Credit Scheme			
Course Code	Category	egory Course Title		Tut	Р	Total Contact Hours	ТН	Tut	Р	Total Credit Assigned
Ch - MC - 3011	МС	ResearchMethodology &Intellectual Property Rights	2			2	2			2
Ch - II - 3021	II	Industrial Training			4	4			2	2
Ch - SLC/AC-3031	SLC/AC	One Course from MOOC/SWAYAM	-				-	-		
Ch - PC- 3041	РС	Dissertation Phase-I			16	16			8	8
			2		20	22	02		10	12

(To be implemented from 2021- 2022) Credit Scheme

Evaluation Scheme

Course Code	Category				E	xaminat	ion Sche	eme		
Course Coue	Category	Course Title	Title ISE ISE -I ISE -II Avg.		ESE	ТW	0	Р	Total	
Ch - MC - 3011	МС	ResearchMethodol ogy&Intellectual Property Rights	40	40	40	60				100
Ch - II - 3021	II	Industrial Training					50			50
Ch - SLC/AC -3031	SLC/AC	One Course from MOOC/SWAYAM					50			50
Ch - PC- 3041	PC	Dissertation Phase-I					50	50		100
					40	60	150	50		300

** Candidate who has unable to get passing marks in certification course has to reappear for improvement at institute level test/ MOOC/SWAYAM

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar

Second Year M. Tech. Chemical Engineering (Semester-IV) (To be implemented from 2021-22)

Credit Scheme

				Teaching Scheme			Credit Scheme			
Course Code	Cate gory	Course Title	тн	Tut	Р	Total Contact Hours	ТН	Tut	Р	Total Credit Assigned
Ch - PC-4011	PC	Dissertation Phase-II			32	32			16	16
					32	32			16	16

Evaluation Scheme

Course	Cate gory		Examination Scheme								
Code	Cate gory	Course Title	ISE		ESE	TW	0	Р	Total		
			ISE -I	SE -I ISE -II Avg.		LOL	1	Ŭ	-	roun	
Ch - PC-4011	PC	Dissertation Phase-II					100	100		200	
							100	100	-	200	
									-		

List of Abbreviations

Abbreviations	Title
PCC	Professional Core Course
PE	Program Elective
OEC	Open Elective Course
LC	Laboratory Course
МС	Mandatory Course
SW	Seminar work
П	Industrial Internship
PC	Dissertation
SLC/AC	Self-Learning Course/Audit course

Tatronalial	Vana L	a a tita a la	$\mathbf{f} \mathbf{\Gamma} = \mathbf{c}$	P_	Taskaslass	, Warananagar
Tarvasanen	котен	istitute o	г в поли	eering a	Technology	warananaoar
1 at y abanco	IXOLC II	istitute 0	i Lingin	coning a	1 connoio g y	manufallagar

First Year M.Tech.Chemical Engineering Semester- I

(PCC) CH1011: Advanced Momentum and Heat Transfer

Examination Scheme

Teaching Scheme

Lectures	03Hrs/Week	ISE	40 Marks
Tutorials	01	ESE	60 Marks
Total Credits	04	TW	25 Marks
		Duration of ESE	•

Course Objectives (CO):

1: Introduce analogy between momentum and heat transfer

2: Explain general conservation equations for transport phenomena

3: Develop momentum balance for a given system at macroscopic and microscopic scale.

4: Analysis of governing equations to obtain velocity profiles

5 :Assist students in developing ability to make engineering judgments ,including judgements regarding process safety.

6. Discuss applications in various heat transfer equipment in process industries ,Heat Transfer Augmentation & Pinch Technology

	Course Contents	Hours
Unit 1	Boundary Layer Flow: Boundary layer equations, separation of BL, Blasius solution for flat state, properties of BL equation, Momentum integral equations.	(04)
Unit 2	Turbulent Flow: Reynolds equation for turbulent flow, velocity distribution for flowin pipe. Statistical theory of turbulence. Drag reduction etc.Non-Newtonian Fluids: Rheological behavior of non-Newtonian fluids, laminar flowin cylindrical tubes, laminar flow between parallel plates, laminar flow in annuli.Generalized relationship for power law model	(04)
Unit 3	Agitation And Mixing: Velocities in stirred tanks. Flow patterns in stirred tanks, Power consumptions in stirred vessels, mixing equipments.Multiphase Flow: Two phase gas vapor liquid flow, horizontal and vertical flow of gas-liquids, liquids, gas-solid mixtures, slip and hold up effect, phase separation and settling behavior, analysis of stratified and bubble flow, formation of bubbles and drops and their size distribution and hold up in different flow system, momentum and energyrelations.Motion In The Fluidized Bed: Bubbling fluidization, semi-fluidization, mixing and	(06)
	segregation in fluidized bed, Numerical and application of fluidization.	(05)

	Introduction: Review of heat Transfer, transient heat conduction; Lumped system analysis, heat transfer analogies. Turbulent Forced Convective Heat Transfer: Momentum and energy equations -			
Unit 4	turbulent boundary layer heat transfer – mixing length concept - turbulence model, Heat pipe.	(04)		
Unit 5	 Heat Transfer In Two Phase Systems: Heat transfer regimes and flow maps. Condensation: Basic process, on planner surface, inside and over pipe of pure and multicomponent vapors. Heat transfer in paced bed and fluidized beds. Overall pressure drop and void calculation methods. Flow regimes in two phase flow. Drift flux model, annular flow, critical flow, flow instabilities, homogeneous flow, and separated flow. Non-Newtonian Flow Heat Transfer: Comparative study of Newtonian and non- 	(05)		
	Newtonian fluid in context with heat transfer, Newtonian and non-Newtonian heat transfer in circular tube, coils and other configuration, Non-Newtonian heat transfer in PFR, CSTR. Generalized relationship of power law fluid, forced convection heat transfer to Bingham plastic and power law fluid in circular conduits.	(04)		
Unit 6	Heat Transfer Augmentation: Active and passive techniques, rough surface, swirl flow generation and compound augmentation. Compact heat exchangers. Introduction of Pinch Analysis and Process integration.	(05)		
	ments: Each student will submit minimum 6 assignments based on the different topics in c rea of advanced momentum and heat transfer ; keeping track of the recent technological tr			
	e Outcomes (CO): At the end of course students will	*		
1: Able	e to understand the chemical and physical transport processes and their mechanism			
2: Able	e to do heat, mass and momentum transfer analysis			
3: Able	e to analyze industrial problems along with appropriate approximations and boundary cond	itions		
4: Able	to develop steady and time dependent solutions along with their limitations			
5: Und	erstand the concepts of boundary layer and its estimation in different flows			
6: Und	erstanding of various types of heat transfer process and devices			
Text B	ooks			
1	R.B. Bird, W.E. Stewart and E.N. Lightfoot, —Transport Phenomena , John Wiley & Son	s, Inc, New York		
]	Ranjeet Basugade, - Advance Heat Transfer Augmentation Technique: Heat Transfer Aug Heat Exchanger Using Rectangular Wings Kindle	C C		
	Pinch Analysis and Process Integration A User Guide on Process Integration for the Efficie edition by Ian C Kemp	nt Use of Energy Second		
2	The Flow of Complex Mixture in Pipes" by Govier and Aziz			
3	ChemicalEngineering" by Coulson and Richardson, Volume I			
4	D.G. Knudsan and D. L. Katz. Fluid Dynamics and Heat transfer. Mc-Graw Hill,			
5				
	HArison & Davidson, Fluidization Engg, Mc-Graw Hill, 1968			

	Useful Websites
1	http://nptel.ac.in/
2	http://swayam.gov.in/
3	http://www.youtube.com/user/nptelhrd

		Tatyasaheb Kore Institu	ute of Engineering & Technology, Warananagar	
		First Year M. T	Tech Chemical Engineering Semester- I	
		PCC 1021: Advance	ed Chemical Engineering Thermodynamics	
Teachin	g Sche	me	Examination Scheme	
Lectures		03 Hrs/Week	ISE 40 Mar	`ks
Tutorials	8	01 Hr/Week	ESE 60 Mar	ks
Total Cr	edits	04	TW 25 Mar	ks
			Duration of ESE .	
Course	Obje	ctives (CO):	· · · ·	
	1.	Define & describe the basic law	vs of thermodynamic	
	2.	Explain the criteria for equilibr	ium with stability of thermodynamic system.	
	3.	Develop skills to make appropr	iate assumptions and ability to predict intermolecular potential	and
		excess property behavior of mu	lti- component systems.	
	4.	Analysis & estimation of the G	ibbs free energy and fugacity of a component in mixture	
	5.	Judge the Chemical equilibrium	n and evaluate the degrees of freedom for chemically reacting s	ystems
	6.	Discuss statistical thermodynan	nic terms.	
			Course Contents	Hours
	Detai	led review of thermodynam	nics laws and basic concepts: Laws of thermodynamics,	
Unit 1	Concepts of entropy, Intensive and extensive variables, Enthalpy, Gibbs free energy,			(08)
	Equat	ions of state, other important	thermodynamic properties.	
	Equilibrium and Stability in one component systems: The criteria for equilibrium,			
	Stability of thermodynamic system, The molar Gibbs free energy and fugacity of a pure			
Unit 2	component. The Gibbs phase rule for one component system. Thermodynamic properties of			(08)
	phase	transitions Problems.		

	The Thermodynamic of Multi Component Mixtures: The thermodynamic description of				
	mixtures. The partial molar gibbs free energy and the generalized Gibbs – Duhem equation.				
Unit 3		(08)			
	Thermodynamic state for a multicomponent multiphase system. The Gibbs phase rule				
	Problems (Non Reactive).				
	The estimation of the Gibbs free energy and fugacity of a component in mixture: The				
	ideal gas mixture, The partial molar mixture properties. The fugacity of a species in gaseous,				
Unit	1 liquid and solid mixtures. Several correlative liquid mixtures (activity coefficient) models	(08)			
	Problems. UNIFAC method, UNIQUAC equation, Vapor liquid equilibrium using activity				
	coefficient models, problems.				
	Chemical Reaction equilibrium: Chemical equilibrium in a single phase system,				
TT • 4	Heterogeneous chemical reactions, Chemical equilibrium when several reactions occur in	(08)			
Unit	single phase, Phase rule and Duhem's theorem for reacting systems, Degree of freedom				
	analysis for non reacting and reacting systems				
	Introduction to Statistical thermodynamics : Quantum considerations, Microstates,				
Unit	Macrostates and thermodynamic probability, Physical models, Boltzmann statistics, Fermi-	(08)			
	Dirac statistics and Bose – Einstein statistics, Partition function, Phase space,				
Assig	nments: Each student will submit minimum 6 assignments based on the different topics in consultation with	n faculty,			
in the	area of thermodynamics of phase equilibria & chemical equilibria keeping track of the recent technologic	al trends			
and d	evelopments.				
	se Outcomes (CO): At the end of course students should be able to				
	1.Formulate and manipulate the thermodynamic treatment of arbitrary processes.				
2.Formulate and analyze specific Chemical Engineering problems using fundamental concepts.					
3.Select appropriate approximations for practical problem solving.					
4.Understand the implications of approximations on the efficiency and accuracy of the solution					
Text	Text Books				
1	1 Chemical Engineering Thermodynamics – Stanlay Sandler II nd edition Wiley graham in chemical				
	engineering.				

Refe	rence Books
1	Introduction to Chemical Engineering Thermodynamics: J.M. Smith, H.C.Vanness McGraw Hill
	International book company.
2	Thermodynamics – by J.P.Holman IV th edition McGraw Hill Inter
3	Statistical thermodynamics- M.C.Gupta Wiley Eastern Ltd.
4	"Chemical Engineering Thermodynamics" K.V.Narayanan
5	"Principles of Chemical Equilibrium", Kenneth Denbigh
6	"Chemical Engineering thermodynamics", Y. V. C. Rao,
7	"Chemical Engineering Thermodynamics", T. E. Daubert
8	"Chemical and Process Thermodynamics", B. G. Kyle
Usef	ul Websites
1	http://nptel.ac.in/
2	http://swayam.gov.in/
3	http://www.youtube.com/user/nptelhrd

	Tatyasaheb Kore Institute of Engineering & Technology, Warananagar				
	First Year M.Tech. Chemical Engineering Semester- I				
	<u>Elective-I</u> : Ch-PE-1031 : Process Modeling in Chemical Engineering				
Teaching Sch	eme		Examination	on Scheme	
Lectures	03 Hrs/Week		ISE	40 Marks	
Tutorials			ESE	60 Marks	
Total Credits	03		TW		
			Duration of	ESE .	
Course Obje	ectives (CO):				
1. Introduce f	undamentals of c	reating mathematical models of chemical proces	ss systems.		
2. Generate st	eady and dynam	ic model for different processes.			
3. Solve proce	ess design proble	ms, based on fundamental analysis and using ma	athematica	l models of chemical	
processes.					
4. Implementation on mathematical tools to analyze the system both to gain insight and make predictions.					
5. Explain verification/ validation of simulation model through the simulators.					
		Course Contents		Hours	

Unit 1	 Introduction to dynamic models: Mass balance equation - Balancing procedure, Case studies: CSTR, Tubular reactor, Coffee percolator, Total mass balance - Case Studies: Tank drainage, Component balances - Case Studies: Waste holding tank, Energy balance- Parallel reaction in a semi continuous reactor with large temperature difference, Momentum balances - CSTR, Gas liquid mass transfer in a continuous reactor. Modeling of stage wise processes: Reactor Configurations, Generalized model description, Heat transfer to and from reactors, Steam heating in jacket, Dynamics of the metal jacket walls. 	(06)
Unit 2	 Mass transfer models: liquid-liquid extraction, distillation, Multicomponent separation, multi component steam distillation, absorber- stage wise absorption, steady state gas absorption with heat effects, evaporator. Model Discrimination And Parameter Estimation: Rate equations, Batch reactor – Constant volume, Semi - batch reactor, CSTR - Constant volume CSTR, CSTR cascade. 	(06)
Unit 3	Lumped and distributed system: Distributed system- Counter current heat exchanger, Flasher design, Condensation, Definition of lumped parameter model. Mathematical models of heat- transfer equipments: Shell & tube heat exchangers, Evaporators, Fired heaters, Partial condensers. Plug flow reactor, Plug flow reactor contactors, Liquid –liquid extraction column dynamics.	(06)
Unit 4	Flow sheet simulation : Process flow sheet simulation, Process and information matrix, Materials and Energy balance computation using modular approach, Process analysis, Process variables, selection, Equipment selection.	(06)
Unit 5	Dynamic simulation: Dynamic simulation of Reactors, distillation column, Absorbers, evaporators and crystallizes, introduction to simulation packages like GPSS, CSMP.	(06)
Unit 6	Process Simulators: Introduction to professional simulator like UNISIM, Aspen. Mathematical tools like SciLab, Introduction to Solver and Poly Math etc.	(06)
Course	Outcomes (CO): At the end of course students will	
1. de	fine physical problems in terms of mathematical modeling and how it is related.	
	ply the need for modeling, estimate necessary model complexity through modelin	
	cognize how models are developing from rate laws, balances and constitutive equation	ns.
	lve the basis of chemical engineering process and adjustable parameters in them.	
	alyze the mathematical tool to predict the chemical engineering process	
6 cre	eate the small modeling with simulation for any physical chemical engineering problem	m

6. create the small modeling with simulation for any physical chemical engineering problem

Text	Text Books		
1	John Ingham, Irving, J. Dunn, Elmar, Heinzle Jiri, E. Prenosil, "Chemical Engineering Dynamics", VCH Publishers Inc., New York, 1974.		
2	Lubeyn W.L. "Process Modeling, Simulation and Control Engineering ", McGraw Hill Book		
3	Edgar, T.F. and D.M. Himmelblau - "Optimization of Chemical Processes ", McGraw Hill BookCo., New York, 1989.		
4	R. W. Gaikwad, Dr. Dhirendra, "Process Modeling and Simulation", Central Techno Publications, Nagpur, 2003.		
Refe	rence Books		
1	C. L. Smith, R. L. Pike and P. W. Murill, "Formulation Optimization of Mathematical models", International Text, Pennsylvania, 1970.		
2	Roger G. E. Franks, "Modeling and Simulation in Chemical Engineer", Wiley Inter Science, New York, 1972.		
Usef	Useful Websites		
1	Moocs/ Swayam Courses on Process Modeling & Simulation in Chemical Engineering, OpenModelica		

	Tatyasaheb Kore Institute of Engineering & Technology, Warananagar			
	First Year M.Tech. Chemical Engineering Semester- I			
	Ele	ctive-I : Ch-PE-1031 : CORROSION ENGINEERI	NG	
Teaching	Scheme	Exar	mination Sche	me
Lectures	03 Hrs/Week	ISE		40 Marks
Tutorials		ESE		60 Marks
Total Crea	lits 03	TW		
		Dura	tion of ESE	•
	Objectives (CO):			
	troduce fundamental			
	prrosion measuremen			
	echanisms of corrosi			
	vironmental aspects			
5. Ex	plain prevention and	l control of corrosion.	I	
		Course Contents		Hours
		nition and importance, Electrochemical nature and fo on rate and its determination.	orms	(06)
C	or corrosion, Corrosi	on rate and its determination.		
I	Electrochemical th	ermodynamics and kinetics: Electrode potent	tials,	
		ax) diagrams, Reference electrodes and experimental		(06)
r		ay's laws, Instrumentation and experimental procedu	re.	
			[afe]	
	extrapolation plots,	osion		
Unit 3 p	Unit 3 probes, Other methods of determining polarization curves.			(06)

Unit 4	Pitting and crevice corrosion : Mechanisms of pitting and crevice corrosion, Secondary forms of crevice corrosion, Localized pitting, Metallurgical features and corrosion: Intergranular corrosion, Weldment corrosion, De- alloying and dezincification.	(06)
Unit 5	Environmental induced cracking : Stress corrosion cracking, Corrosion fatigue cracking, Hydrogen induced cracking, Methods of prevention and testing, Erosion, Fretting and Wear.	(06)
Unit 6	Environmental factors and corrosion : Corrosion in water and aqueous solutions, Corrosion in sulphur bearing solutions, Microbiologically induced corrosion, Corrosion in acidic and alkaline process streams. Prevention and control of corrosion : Cathodic protection, Coatings and inhibitors, Material selection and design.	(06)
Course	e Outcomes (CO): At the end of course students will	
	fine fundamentals of Corrosions.	
	ply the Corrosion measurement techniques	
-	cognize Mechanisms of corrosion.	
	lve the problems related to the environmental impact of corrosion.	
	alyze the problem and its preventive actions.	
5. dii	aryze the problem and its preventive actions.	
Text Bo	ooks	
	Contana, M.G., Corrosion Engineering, Tata McGraw-Hill (2008). 3rd ed. (seventh eprint)	
	ones, D.A., Principles and Prevention of Corrosion, Prentice-Hall (1996).	
Referen	nce Books	
	<i>Tierre R. Roberge, Corrosion engineering: principles and practice, McGraw-Hill</i> 2008).	
/	astri, V.S., Ghali, E. and Elboujdaini, M., Corrosion prevention and protection: Practical solutions, John Wiley and Sons (2007)	

		Tatyasahe	b Kore Institute of Engineering & Technology,	Warananagar		
		F	rst Year M. Tech Chemical Engineering Semes	ster- I		
		Elect	ve-I : Ch-PE-1031: Polymer and Rubber Te	chnology		
Teachi	ng Sche	eme		Examination Sche	me	
Lecture	s	03 Hrs/Week		ISE	40 Mar	`ks
Tutorial	ls			ESE	60 Mar	ks
Total C	redits	03		TW		
				Duration of ESE		
Course	e Obje	ctives (CO):				
	11	Define & describe	the basics of polymer and rubber.			
	2	Explain the crite	ia for the polymerization process.			
	3	Develop skills to	understand and study various processes of polym	er and rubber prod	uction.	
	4 7	To understand the	advances in polymer and rubber technologies.			
	5	To prepare the stu	lents to take challenges of polymer field in his pr	ofession.		
			Course Contents			Hours
	Polyr	nerization Fund	amentals – Introduction and importance of po	olymers, Developn	nent of	
	polymers, Classification of polymers based on physiochemical structure, Types of					
	polyn	nerization, Mech	anism of polymerization, Physical properties a	nd technical appli	cation,	
Unit 1	Polymer structure and stereo-regular polymers Molding of plastics into articles,					(06)
	Home	ogeneous, Bulk,	Solution, Emulsion and suspension polymeriza	ation and their		
	comp	arison				
	Man	ufacture of indu	strially important polymers for Plastics – Ra	w materials,		
	polyo	lefines- polyther	e, Poly propylene, Vinyl polymers-polyvinyl c	hloride, polyvinyl		
Unit 2	aceta	te, polyvinyl alco	hol, polyvinylidiene chloride, Formaldehyde a	nd Epoxy resins ar	nd	(06)
			s, polyacrylonitrile, polystyrene and copolyme	1 1		
		olyamides,		, , , , , , , , , , , , , , , , , , ,		
	and p	oryannaes,				

	Manufacture of industrially important polymers for Synthetic fibers –Introduction,	
Unit 3	Classification, properties and preparation, Nylon -6, Nylon – 66, Rayon, Sillicones, Poly	(06)
	silicones, Orlan, Saron, Teflon, Cellulose, and its derivatives.	

	Manufacture of rubber and elastomers – Introduction and importance of rubber, physical	
	and chemical properties of rubber, Classification, Natural Rubber- Structure and properties,	
T T •/ A	Rubber latex production and processing, synthetic rubber- Polymerization methods and unit	(06)
Unit 4	operations involved, Styrene – Butadiene copolymers, Nitrile rubber, Neoprene, Butyl	
	Rubber, Polyisoprene, Polybutadiene, Thiokol, Hypalon, Sillicone Rubber, Polyurethane	
	rubber, Spandex, Sponge rubber, Foam rubber, Laminates, Rubber cement.	
	Processing and manufacture of rubber products – Vulcanizing, Compounding, Rubber	
Unit 5	chemicals, Processing equipment and method, Tyres and tubes manufacture, Reclamation of	(06)
	rubber, Applications of rubber.	
Unit 6	Polymer and rubber industries in India – Development and scope of plastics, Synthetic Fibre, and elastomer industry in India.	(06)

Cou	rse Outcomes (CO): At the end of course students should be able to
	1 Understand polymer and rubber processing
	2 Formulate and analyze specific polymer & rubber Engineering problems using fundamental concepts.
	3 Select appropriate approximations for practical problem solving.
	4 Understand the future of polymer & rubber industry in Indian context.
	5 Understand advanced processes
Text	Books
1	. G.S. Misra, —Introductory Polymer Chemistry , Wiley Eastern Ltd.,New Delhi,1993.
2	D.C. Miles, —Polymer Technology , Chemical Publishing New York, 1979.
3	Fred Billmeyer, —A Text Book of Polymer Science , 3rd Edition, John Wiley and Sons, New York, 1984.
4	b.k.Sharma ,"Industrial Chemistry," 10th edition, Krishna Prakashan,India Pvt. Ltd. Meerut, 1999
Refe	rence Books
1	Anil Kumar, S.K. Gupta, —Fundamentals of Polymer Science and Engineering , Wiley, 1978.
2	D.J. Williams, —Polymer Science and Engg . Prentice Hall, New York 1971.
3	F. Rodrigues, —Principles of Polymers systems , McGraw Hill, New York 1970
4	George Odian, —Principles of Polymerization , 2nd Edition John Wiley and Sons, New York 1981.
Usef	ul Websites
1	http://nptel.ac.in/
2	http://swayam.gov.in/
3	http://www.youtube.com/user/nptelhrd

	Tatyasaheb Kore Institute of Engineering & Technology, Warananagar First Year M.Tech. Chemical Engineering Semester- I				
	<u>Elective-II</u> : Ch-PE-1041 : Nanotechnology				
Teaching Scheme			Examination Sche	me	
Lectures	03 Hrs/Week		ISE	40 Marks	
Tutorials			ESE	60 Marks	
Total Credits	03		TW		
			Duration of ESE		

Cour	se Objectives (CO):			
	Introduce fundamentals of Nanoscience and Nanotechnology.			
2.	Study the concept of nanomaterials.			
3.	Explain the synthesis, purification and application of nanomaterials.			
	Study the advances in nanotechnology			
5.	Intellectual property rights of nanotechnology			
	Course Contents	Hours		
Unit 1	Fundamental concepts (Bottom-up and Top-down processes).	(07)		
Unit 2		(07)		
Unit 3	Nanomaterials: Fundamental concept of nanomaterial, Materials used in nanotechnology, carbon nanotubes-properties	(07)		
Unit 4	Synthesis, Purification, Application of Nanomaterials.	(06)		
Unit 5	Recent Advances in Nanotechnology	(07)		
Unit (Intellectual property rights on Nanotechnology: Importance of IP Protection, copy rights and trade secrets	(06)		
	se Outcomes (CO): At the end of course students will			
1.7	o understand the application of Nanoscience in catalysis and green chemistry.			
2. Demonstrate the understanding of length scale concepts, nanostructures and nanotechnology.				
3.0	Characterization of nanomaterials.			
4. F	Physico chemical aspects of different types of nanostructures.			
5. Systematically solve scientific problems related specifically to nano-technological materials using conventional scientific and mathematical notation				
6. Identify the principles of processing, and synthesis of nonmaterial's and nanostructures				
Text l	Books / Reference Books			
1	Principles of Nanotechnology", Phani umar			
2	"Nanomaterials", Vishwanathan			
	"The Nanoscope" Encyclopedia of Nanoscience and Nanotechnology Vol I to Vol 6, Edited by Dr.Parag Diwan and Ashish Bharadwaj			

	TatyasahebKore Institute of Engineering & Technology, Warananagar				
		First Year M.Tech Chemical Semester- I			
	Elective-II : Ch-PE-1041: Green Technology				
Teaching Scheme			Examination Sche	me	
Lectures	03 Hrs/Week		ISE	40 Marks	
Tutorials			ESE	60 Marks	
Total Credits	03		TW		
			Duration of ESE		

Cours	e Objectives (CO):	
	1.To present different concepts of green technologies.	
	2. To acquire principles of Energy efficient technologies	
	3. To gain knowledge of the importance of life cycle assessment	
	4. To learn the importance of green fuels and its impact on environm	ent.
	5 To learn zero pollution control aspect	
	Course Contents	Hours
Unit 1	Introduction to Organic Chemistry /Analytical Chemistry /Basic Chemical Engineering	(04)
Unit 2	Introduction to Green Chemistry: Principles of Green Chemistry, Reasons for Green Chemistry (resource minimisation, waste minimisation, concepts), Green reactions solvent free reactions, Catalyzed (heterogeneous/homogeneous) reactions, MW/ Ultrasound mediated reactions, Bio catalysts etc	(08)
Unit 3	Introduction to Pharmaceutical Process Chemistry: Introduction to process chemistry, the difference between synthesis and process,	(07)
Unit 4	Rote design, Route optimization, DOE	(05)
Unit 5	Role of Analytical Chemistry in Process Chemistry Role of Process Safety in Process Chemistry: TH classification, MSDS, Thermal Hazards, Waste segregation and disposal.	(07)
Unit 6	Scale-up aspects including PE in Process Chemistry: Case Studies; New Initiatives : Micro reactors.	(06)
	e Outcomes (CO): At the end of course students will	
. Unde	erstand the principles of green chemistry and engineering	
. Desi	gn processes those are benign and environmentally viable	
. Desig	n processes and products those are safe and hazard free	
. Lear	n to modify processes and products to make them green safe and economically ble.	
. App	y the principles of green technology to specific industrial processes	
Refere	nce Books	
	ames H.Clarke & Duncan Maacquarrie, Handbook of Green Chemistry and Technology, dition (2002)	Wiley-Blackwell; 1
2 I	Paul T.Anastas and John C. Warner, Green Chemistry: Theory and Practice, Oxford Univ 2000)	versity Press, USA
	A.Lancaster, Green Chemistry (Paperback), Royal Society of Chemistry; 1 edition (2002	
	Stanley E.Manahan, Green Chemistry and the Ten Commandments of Sustainability, 2nd ChemChar Research Inc (2005)	ed (Paperback),
5 A	Albert Matlack, Introduction to Green Chemistry (Hardcover), CRC Press; 1 edition (200	1)
	Green Chemistry in the Pharmaceutical Industry, Peter Dunn (Editor), Andrew Wells (Ed Villiams (Editor), Wiley-VCH (2010)	itor), Michael T.
7 H	Kenneth M.Doxsee and James Hutchison Green Organic Chemistry: Strategies, Tools,	

TatyasahebKore Institute of Engineering & Technology, Warananagar	
First Year M. Tech Chemical Semester- I	

Elective-II :	: Ch-PE-1041:	Pharmaceutical	Biotechnology

	E	<u>lective-II</u> : Ch-PE-1041: Pharmaceutical Biotech	nology	
Teachir	ng Scheme	E	xamination	Scheme
Lectures	s 03 Hrs/Week	IS	SE	40 Marks
Tutorial	s	E	SE	60 Marks
Total Cr	redits 03	Т	W	
		D	uration of ES	SE .
	Objectives (CO):			
		te the different pharmaceutical parameters of the cur	rrent and fut	ure biotechnology
-	roducts on the mark		1 751 1	
	chnology products and ventional drugs will al	their use in therapeutics and diagnostics will be discusse	ed. Theadvan	tages of these products
	ventional drugs will al	so be discussed		
3. To De	evelop skills in biote	chnological techniques for obtaining and improving	thequality of	of natural products
0. 10 D	evelop skins in olote	ennotogical techniques for octaning and improving	inequality	finaturur products.
4. Impai	ts knowledge of en	zymes, biosensors, Diagnostic kit.		
5 .Impart	s knowledge of Bio	process engineering and technology		
		Course Contents		Hours
		in Pharmaceutical Process- Production of pharmaceut		
Unit 1		red cells (hormones, interferrons) - Microbial transfor		(07)
CIIIC I		important pharmaceuticals (steroids and semi-synthe	etic	(07)
	antibiotics)	alanment of new concention antihistical Protein ancie		
Unit 2	drug design, drug ta	elopment of new generation antibioticsl, Protein engingering.	leering,	(06)
	Disease Diagnosis a	nd Therapy, ELISA and hybridoma technology, DNA		
Unit 3	vaccine,Gene Thera	py, Toxicogenomics.		(06)
Unit 4	Proteomics in Drug	Development, Role of Proteomics in Drug Development	n	(05)
Umt 4		e by Proteomics, Separation and identification techniq		(03)
Unit 5		e by Proteomics, Separation and identification techniq relopment of antibody based protein assay for diagnosi		(06)
	6	Development,Use of enzymes in clinical diagnosis,		
Unit 6		apid clinical analysis,Diagnostic kit developme	nt for	(06)
Course	microanalysis.	At the end of course students will		
		chniques used in modern biotechnology.		
		with step by step instructions to address a research pa		
		nt applications of biotechnology and advances in the	e different a	reas like medical,
		premediation, agricultural,		
	imal, and forensic		11 0	
		examples on how to use microbes and mammalian c	cells for	
1	uction of pharmaceu	1	1	
 Expla 	in the general princi	ples of generating transgenic plants, animals and mi	crobes	the second

Γ	Refe	Reference Books	
	1	Balasubramanian, Bryce, Dharmalingam, Green and Jayaraman (ed), Concepts in Biotechnology, University Press, 1996	
	2	Epenetos A.A.(ed), Monoclonal antibodies: applications in clinical oncology, Chapman and Hall Medical, London	

	Tatyasaheb Kore Institute of Engir	neering & Technology, Warananagar		
	First Year M.Tech Chemi	ical Engineering Semester- I		
	Elective-III :PE- 1051:	Bio Process Engineering		
Teaching	g Scheme	Examination Scheme		
Lectures	03 Hrs/Week	ISE 40 Mar	ſks	
Tutorials		ESE 60 Mar	ks	
Total Cre	edits 03	TW		
		Duration of ESE .		
Course	Objectives (CO):			
1. Apply	engineering principles to address issues in bio	processes		
2. Analy	ze and identify limiting factors in a bioprocess	and Propose solutions to address		
biologica	l and engineering problems			
3. Explai	n the aerobic and anaerobic fermentation proce	esses		
4. Descri	be applications and solve problems relating to	the use of enzymes for industrial		
bioproces	sing			
5. Deteri	nine and analyze Mass transfer in heterogeneous	ous biochemical reaction systems		
with proc	ess parameter			
6. Impro	ve chemical parameters in bioreactors			
	Course	Contents	Hours	
T T 1 / 4	Review of fundamentals of microbiology and	biochemistry. Bioprocess principles: Kinetics	(06)	
Unit 1	of biomass production. Substrate utilization and product formation.			
	Batch and continuous cultures. Fed batch culture introduction. Fermentation processes.		+	
Unit 2	General requirements of fermentation processe	28.	(06)	

	An overview of aerobic and anaerobic fermentation processes. Examples of simple and complex media. Design and usage of commercial media for industrial fermentation. Thermal	
Unit	death kinetics of microorganisms. Heat sterilizations of liquid media. Filter stabilizations of	(06)
	liquid mediaand air.	
	-	
	Enzyme technology- Microbial metabolism enzymes classification and properties. Applied	
Unit	4 enzyme catalysis-kinetics of enzyme catalytic reaction. Metabolic pathways. Protein synthesis in	(06)
	cells. Bioreactor design and operations. Selection scale up operations of bioreactors.	
	Mass transfer in heterogeneous biochemical reaction systems. Oxygen transfer rates and	
Unit	5 coefficients. Role of aeration and agitation in oxygen transfer. Heat transfer processes in	(06)
	biological systems. Recovery and purification of products.	
	Introduction to instrumentation and process control in bioprocesses. Measurement of physical	
Unit	and chemical parameters in bioreactors. Monitoring and control of dissolved oxygen, pH,	(06)
	Impeller speed and temperature in a stirred fermenter	
Cour	se Outcomes (CO): At the end of course students should be able to	
	1. Understanding of biological basics and bioprocessing	
	2. Understanding the difference between bioprocesses and chemical processes	
	3. Bioprocess design and operation	
	4. Choice of bioreactor	
	5. Heat & mass transfer considerations and scale up of bioprocesses	
	6. Introduction to bioprocess monitoring/control	
Text	Books	
1	M. L. Shuler, F. Kargi. Bioprocess engineering. 2nd edition. PHI. New Delhi. 2002.	
1	J. E. Bailey, D. F. Ollis. Biochemical engineering. 2nd edition. Mc Graw Hill Publication co.NY.1985.	
2	Pauline M. Doran, Bioprocess Engineering Principles, Academic Press, 2001	

	Tatyasal	eb Kore Institute of Engineering &	& Technology, Warananagar	
		irst Year M. Tech Chemical Eng	ineering Semester- I	
		Elective-III: PE- 1051: Mater	rial Engineering	
Teachir	ng Scheme		Examination Scheme	
Lectures	s 03 Hrs/Week		ISE 40 Ma	urks
Tutorial	ls		ESE 60 Ma	rks
Total C	redits 03		TW	
			Duration of ESE .	
Course	e Objectives (CO):			
1. Expla	in the engineering ma	erials characterization		
2. Expla	in Metallic phases and	heir properties		
3. To ur	nderstand the principl	s of optical and electron microse	copy for study of macro and micro-	
structure	e of materials.			
4. Inspe	ct properties through	nange in various parameters over	composite materials	
5. To ga	ain knowledge in und	rstanding the tools and technique	es for studying the substructure and	
	atomic structur	of materials		
6. To bu	uild an expertise in cha	acterization of engineering mater	rials.	
		Course Content	ts	Hours
T T •4 4	Engineering requirem	nt of materials, atomic bonding, atom	mic arrangements, structural imperfections	
Unit 1	and atom movements,	lectronic structures & process binary	y alloys and equilibrium diagrams.	(06)
Unit 2	Metallic phases and t	eir properties, phase transformation	ns in iron carbon system.	(06)
	Heat treatment, surf	ce hardening, case hardening me	etals and their alloys, organic materials	
Unit 3	& their properties, c	ramic phases and their properties	, multiphase materials, reactions within	(06)
	solid materials.			
TI24 4	Modification of properties through change in microstructure, corrosion, oxidation, thermal			(00)
Unit 4	stability, radiation da	nage, composite materials		(08)
	Crystallography, X-I	ay Diffraction Methods, Reitveld	Refinement, Neutron Diffraction, X-ray	-
Unit 5	absorption, XRay Fluorescence spectroscopy, Electron Diffraction- diffraction pattern in specific			(06)
	modes.			

	LEED and RHEED, Electron Optics, Electron Microscopy-Transmission and Scanning Electron
Unit	6 Microscopy, STM and AFM, Compositional analysis employing AES, ESCA and Electron Probe (06)
	Microanalysis.
Cou	rse Outcomes (CO): At the end of course students should be able to
1. To	review physics and chemistry in the context of materials science & engineering
	describe the different types of bonding in solids, and the physical ramifications of these differences
	describe and demonstrate diffraction, including interpretation of basic x-ray data.
4. To	promote an understanding of the relationship between material structure, processing and properties
5. Gai	in important conceptual and operational understanding of a wide range of methods for
	characterizing Materials
6. Gai	ined a broad perspective on materials chemistry and physics
Refe	rence Books
1	James F. Shackelford, Introduction to Materials Science for Engineers, 7th Edition, Pearson Prentice
	Hall(2009)
2	W. D. Callister, Fundamentls of Materials Science and Engineering, Wiley (2007)
3	C. Kittle, Introductin to Solid State Physics, Wiley (2007)
4	R. W. Cahn and P. Haasen, Physical Metallurgy, North Holland (1996)
5	Bradley D. Fahlman Materials Chemistry, Kindle Edition 2008).
6	B.D.CullityElementS of X-ray Diffraction AddisionWesely Reading Mass 1978.
7	David D. Brandon and Wayne D. Kaplan Microstructural Characterization of Materials wiley
8	Dawn Bonnel Scanning Probe Microscopy and Spectroscopy: Theory, Techniques, and Applications 2000.
9	C. Julian Chen Introduction to Scanning Tunneling Microscopy Monographs on the Physics and
	Chemistry of Materials

 Tatyasaheb Kore Institute of Engineering & Technology, Warananagar

 First Year M. Tech Chemical Engineering Semester- I

 Elective-III :Ch – PE – 1051 : Process and Equipment Design

Teaching Scheme E		Examination Sch	eme				
Lectures	5	03 Hrs/Week			ISE	40 Ma	rks
Tutorial	S				ESE	60 Ma	rks
Total Ci	redits	03			TW		
					Duration of ESE	•	
Course	Obje	ctives (CO):					
	1	Define and des	cribe the basic design	procedure for an equipr	ment.		
	2 1	Explain the use of	f formula and correla	ons used for designing	of equipment.		
	3	Develop skills	to make appropriate a	sumptions and ability t	o predict the data requ	ired for	
designi	ng.						
	4	Analysis and est	imation of predicted of	ata with calculated valu	ies.		
	5 J	udge the design	parameters along with	the permissible design	guidelines.		
	6 I	Discuss about tria	l and error estimation				
			Cou	rse Contents			Hours
	Shell and Tube Heat exchanger: Classification, Shell and Tube side Heat Transfer			(06)			
Unit 1	Coefficients, Pressure drop, Fouling, Baffles, Passes Tubes Tube Sheet, Effectiveness, of						
	Heat exchanger, Heat Exchangers sizing For Heating or Cooling in agitated vessel.						
T I 1 / A	Heat Exchange equipment: Plate Heat Exchanger, Bayonet Heat Exchanger, Heat					(0.0)	
Unit 2	Regenerator, Thermic Fluid Heating System Design Consideration.					(06)	
	Heat Exchange equipment: Cooling Tower Design Consideration, Cooling Water Blow						
Unit 3	Down, Cooling Water Corrosion, Crossed flow induced Draft Cooling Tower, Evaporation,					(06)	
	Single and Multiple Effect forward and Backward Feed Evaporators.						
Unit 4		tor: Reactor Cla or, Scale Up.	ssification, Design E	uation for Batch PFR	and CSTR, Fluidized	Bed	(06)
		· · ·	ent: Classifications o	Separator, Design Pro	ocedure		
TI	For Gas Liquid Separator Oil Water Separator, Decanter, Gravity Separators, Centrifugal					(06)	
Unit 5	Separators Gas Cleaning Equipment: Cyclone Separator, Electrostatic Precipitator, Granular						
	Bed F	filter, Hydro-cyd	lone.				
	Pipe	lines: Pipe Thic	kness, Pipe diameter,	Condensate Piping, Pi	pe Support, Design o	f	
TI ! ()	Pipeline for Natural Gas, Transportation of Crude oil, Pipe Line in Sea Water, Pipeline				(06)		
Unit 6	1						

Cou	rse Outcomes (CO): At the end of course students should be able to
1 Rec	all their concepts in designing the chemical equipments
2 Inte	rpret causes of failure of chemical equipment
3 Hav	e awareness on advances in process engineering design of many process equipments
	e part in remedial or preventive measurements to avoid failure of vessel with safe design lines
5 Eva	luate and apply their ideas on dimensional analysis to explore the optimum design variables
6 Tes	t the process equipment with prior safety.
Text	Books
1	Process Design Of Equipments Vol1, 4th Edition by Dr. S .D. Dawande, Denett & Company Publication 2011
2	Process Design Of Equipments Vol2, 4th Edition by Dr. S. D. Dawande, Denett & Company Publication 2012
Refe	rence Book
1	Introduction to Process Engineering and Design 4th Reprint 2011, S. B. Thakore, B. I. Bhatt, Tata Mc Graw Hill, Education Pvt. Ltd, Delhi
Usef	ul Websites
1	http://nptel.ac.in/
2	http://swayam.gov.in/
3	http://www.youtube.com/user/nptelhrd

	Tatyasał	eb Kore Institute of Engineering & Technology	y, Warananagar	
		First Year M.Tech Chemical Engineering Seme	ester- I	
	CH-I	C-1061: ADVANCED SEPARATION LAB	ORATORY	
Teaching Scho	eme		Examination Sche	eme
Lectures			ISE	
Tutorials			ESE (Oral)	25
Practical	02Hrs/Week		TW	25
Total Credits	02		Duration of ESE	
Course Obje	ctives (CO):			
	1.Lear	n new techniques of separation		
	2.Lear	n possible cases of industrial application.		
	3. Lear	n estimation of separation coefficient.		

	Course Contents	Hours			
1	Ultrafilteration a) Pilot scale	(04)			
2	Ultrafilteration a) Small scale	(04)			
2	Supported liquid membranes.	(04)			
3	Microfiltration of raw material	(04)			
4	Ion Exchange a) Resin	(04)			
5	Ion Exchange b) Equillibria	(04)			
6	Ion Exchange c) Column	(04)			
7	Electro coagulation	(04)			
8	Pressure swing Adsorption	(04)			
9	Electrostatic precipitator	(04)			
Cou	rse Outcomes (CO): At the end of course students will get				
1.Knc	wledgeof recent advances in separation techniques				
2. Ab	lity to separate different chemical compounds.				
3. Ab	lity to handle different advance equipments.				
4.Cor	siderably more in-depth knowledge of the major subject.				
5.Dee	per knowledge of Experimental methods				
6. Kn	owledge of industrial methods used for the separation processes.				
Refe	rence Books				
1	C.J.King "Separation Processes" 2nd Ed., Tata McGraw Hill Publishing Co. Ltd., 1	New Delhi, 1986.			
2	Sirkar K. & Winston H.O. "Membrane Hand Book" Van Nostrand Reinhold, New	Sirkar K. & Winston H.O. "Membrane Hand Book" Van Nostrand Reinhold, New York, 1992.			
3	McCabe & Smith "Unit Operations of Chemical Engineering" 5th Ed., McGraw Hi	Il International.			
4	Richardson and Coulson,"Chemical Engineering Volume -II", Pergamon Press, 197				
5	Schweitzer P.A, "Handbook of Separation Techniques for Chemical Engineering"	2nd edn.,McGraw Hill			
	Book Co.,1986.				
6	Souri Rajan S. "Reverse Osmosis" Logos Press Ltd.				

	·	eb Kore Institute of Engineering & Technology First Year M.Tech. Chemical Engineering Seme	e e	
		Ch - SW - 1071: Seminar – I		
Teaching Sche	Teaching Scheme Examination Scheme		me	
Lectures			ISE	
Tutorials			ESE (Oral)	
Practical	02Hrs/Week		TW	50
Total Credits	01		Duration of ESE	

Course Objectives (CO):
1 To Identify understand and discuss current real-world issues

2. To Distinguish and integrate differing forms of knowledge and academic disciplinary approaches (e.g.,

humanities and sciences) with that of the student's own academic discipline (e.g., in agriculture, architecture, art, business, economics, education,

engineering, natural resources, etc.). And apply a multidisciplinary strategy to addresscurrent, real-world issues.

3. To Improve oral and written communication skills.

4. To Improve presentation skills

Course Contents	Hours
 Seminar-I should be based on the literature survey on any topic relevant to Design Engineering (should be helpful for selecting a probable title of the dissertation). Each student has to prepare a write up of about 25-30 pages of "A4" size sheets and submit it in IEEE format in duplicate as the term work. The student has to deliver a seminar talk in front of the faculty of the department and his classmates. The concerned faculty should assess the students based on the quality of work carried out, preparation and understanding of the candidates. Some marks should be reserved for the attendance of a student in the seminars of other students. 	()

Course Outcomes (CO): At the end of course students will

1. Apply principles of ethical leadership, collaborative engagement, socially responsible behavior, respect for diversity in an interdependent world, and a service-oriented commitment to advance and sustain local and global communities.

2. Learn and integrate. Through independent learning and collaborative study, attain, use, and develop knowledge in the arts, humanities, sciences, and social sciences, withdisciplinary specialization and the ability to integrate information across disciplines.

3. Think and create. Use multiple thinking strategies to examine real-world

issues, explore creative avenues of expression, solve problems, and make consequential decisions

4.Communicate. Acquire, articulate, create and convey intended meaning using erbal and non-verbal method of communication that demonstrates respect and understanding in a complex society.

SEMESTER-II

		•	ineering & Technology, Warananaga nical Engineering Semester- II		
			vanced Mass Transfer		
Teachi	_		Examination		
Lecture	S	03 Hrs/Week	ISE	40 Marks	
Tutoria	ls	01 hr/Week	ESE	60 Marks	
Total C	redits	04	TW	25 Marks	
			Duration of E	ESE .	
		ives (CO):			
1		ice fundamentals of macroscopic and micro		ems.	
2	-	re and classify various mass transfer operat		dala of abarrian1	
3	process	process design problems, based on fundame	mai analysis and using mathematical mo	ouels of chemical	
4	1	nentation on mathematical predictions for n	ulti-component system		
5		n Extraction, ion-exchange, adsorption proc	· · · ·		
		se Contents		Iours	
	Physi	cal-Chemical Phenomena: Diffusivity and	mechanism, Diffusion dispersion,		
	Diffusivity measurements and prediction in non- electrolytes and electrolytes,				
Unit 1		solubility of gases in liquids, Inter-phase mass transfer in two phase and multi		(06)	
	comp	onent system.			
	Mass	transfer with Chemical reaction: Fluid-fl	uid reactions involving diffusion		
		er, application of mass transfer to reacting s			
Unit 2		sis, mass transfer coefficients, determination		(06)	
C III (2		bhase contractors under the conditions of fre	ee forced convection, prediction of		
	mean drop or bubble size of dispersion.				
		acting devices: Capacity and efficiency, end	ergy requirements of separation		
TI	proces				
Unit 3	distill	ctive distillation, Reactive distillation, cryog	genic distillation and molecular ((06)	
	aistill	auon.			
		component distillation: Mass transfer mod			
Unit 4		ns, Multicomponent distillation tray colum	· · · · · · · · · · · · · · · · · · ·	06)	
	INON-6	equilibrium models, solving the model equa	uons, Design studies of De-		

	Adsorption, Ion exchange and chromatography: Adsorption, equilibrium						
	considerations, pure gas adsorption, liquid adsorption, Ion exchange equilibrium,						
Unit 5		(06)					
	internal transport, mass transfer in ion exchange and chromatography.						
Unit 6	Extraction: Supercritical fluid extraction, Supercritical fluid, phase Equilibria, industrial applications, residuum oil Supercritical process – decaffeination of coffee, extraction of oil from seeds, residual oil Supercritical application (ROSE), Supercritical fluid chromatography.	(06)					
Course	a Outcomes (CO): At the end of course students will						
Course Outcomes (CO): At the end of course students will							
1. Define various operations like distillation, extraction, leaching, Compare and classify various mass transfer operations with or without chemical reaction							
2. Design calculation of distillation column for the multi-component system							
3. Analyze the problem of Separation by adsorption and design of absorber, chromatographic separation							
4.	Evaluate the separation by liquid extraction, leaching used and justify the extract operator problem	tion to choose for specific					
5. Estimate final data for designing number of stages, Height of column in the operations							
6. Define various operations like distillation, extraction, leaching							
Text I	Books						
1	"Separation process" by J. Sieder and Henley, Wileypublishers, 1998						
2	"Principles of Mass Transfer and Separation Process" Binay K Datta, EEE, PHI Pvt Ltd.						
3	"Unit operation in Chemical Engineering" 6 TH edition, McCabe Smith, Mc Graw Hill						
4	"Mass Transfer Operations" by Trebyal, McGraw Hill						
5	"Mass Transfer Fundamentals and Applications", Anthony L. Hines & Maddox.						
	ence Books						
	"Transport Separations and Unit Operations" 3rd edition, G.J.Geankoplis, Prentice Hall.						
	"Seperationprocess" by C. Judson King, McGrawHill,1982						
	"Distillation", Matther Van Winkle, Mc Graw Hill, Book Company						
Useful Websites							
1	1 Moocs/ Swayam/NPTEL Courses on Mass Transfer Operations I						

	Tatyasa	heb Kore Institute of Engi	neering & Technolog	gy, Warananaga	r		
		First Year M.Tech. Chemi	ical Engineering Sem	ester- II			
		M.Tech . (Chemical En Ch-PCC-2021 Chemical					
Teachin	g Scheme		E	xamination Sch	ation Scheme		
Lectures 03 Hrs/We			C	CIE 40 Marks			
Tutorial	s 01 hr/Week		E	SE	60 Marks		
Total Credits	04			W uration of ESE	25 Marks 02 Hrs. 30 Min.		
	Objectives (CO):						
		ed, logical control schemes for					
		of process and control behavi					
		onfigurations for standard op	erations.				
	CO4: Estimate controll	· · · · · · · · · · · · · · · · · · ·	1.0 .0 11 .	1 • • • •			
		of controller that can be used	for specific problem in	n chemical indus	try.		
6. (CO6: Design digital co	ontrol systems.			Hours		
					nours		
Unit 1	 Introduction To Feed Back Control: Concept of feedback Control, Types offeedback Controllers, Measuring Devises, Transmission Lines, Final ControlElements. Dynamic Behavior Of Feedback Control System: Block Diagram and closed looped response, effect of P Control, I Control, D Control, and Composite Control Action on response of a controlled process. 			(06)			
Unit 2	Mass transfer with Stability Analysis C equation, Routh–Hu Design Of Feedbac Criteria, Time integr Controller tuning	(06)					
Unit 3	Frequency Response Analysis Of Linear Process: Response of First Order System to Sinusoidal input, frequency response characteristics of a general linear system, Bode Diagram, Nyquist Plots. Design Of Feedback Control System Using Frequency Response Technique Bode Stability Criteria, Gain and Phase Margin, Ziegler- Nicholas Tuning Techniques, Nyquist Stability Criteria.				(06)		

Unit 4	 Feed Back Control Of System With Large Dead Time Or Inverse Response Processes with Large dead time, Dead Time compensation, Control of System with Inverse response. Control System With Multiple Loop: Cascade Control, Selective Control System, Split Range Control. 	(06)	
Unit 5	 Feed Forward And Ratio Control: Logic of Feed Forward Control, Problem of Designing feed forward controllers, Pretical Aspect on Design of Feed forward controllers, Feed forward- Feed Back Control, Ratio Control. Adaptive and Inferential control system: Adaptive Control, Inferential Control Introduction To Plant Wide Control:Plant Wide Control issues, Hypothetical plant for Plant wide control Studies, Internal Feedback of Material and Energy, Interaction of Plant Design and control system design. 	(06)	
Unit 6	 Plant Wide Control System Design: Procedures for Designs of Plant wide control systems, A Systematic procedure for plant wide control system design, Case studies: The Reactor Flash Unit Plant, Effect of Control Structure on Closed looped performance. Digital Process Control System: Hard ware and Software, Distributed Digital Control System, Analog and Digital Signals and Data transfer, Microprocessors and Digital Hardware in Process Control, Software Organization. 	(06)	
Ch	nce Books emical Process Control An Introduction To Theory And Practice- George Stephanopolous lia , New Delhi2003	, Prentice Hall Of	
2 Pro	ocess Dynamics And Control, Dale E Seborg, Yhomas F Edgar, Duncan A, Mellichamp- W	iley India2006	
~	ocess Control Modeling, Design And Simulation, B.Wayne Beqnette, Prentice Hall Of Indi lhi2004	a, New	

	Tatyasaho	eb Kore Institute of Engineerir	ng & Technology, Warananag	gar
	Fir	st Year M.Tech. Chemical En Elective - I		
		Ch-PE-2031 Modern Re	action Engineering	
Teaching	g Scheme		Examinatio	on Scheme
Lectures	03 Hrs/Week		CIE	40 Marks
Tutorials			ESE	60 Marks
Total Cre	edits 03		TW	
			Duration of	ESE .
Course C				
	understand the principle			
		n different types of reactors		
	Č	nd operation of catalytic reactors		
	<u> </u>	ors to make processes safe and ef		1 1 1 1
	alyze multiple reactions to determine selectivity a	carried out both isothermally an	d non-isothermally in flow, batc	ch and semi batch
		lytic mechanism and how one go	as about deriving a rate law m	achanism and rata
	step that are consistent w		es about deriving à late law, me	conamism, and rate-
	Course Contents			Hours
		ical kinetics and Ideal reactor.		(06)
	Non Ideal flow and mi	xing: Mixing concept, RTD, Res	ponse measurement	
		Dispersion model, Tank in Series		(06)
	model, analysis non ide			
Unit 3 Heterogeneous reaction: Classification, Rate Controlling step, globale rate of reaction.				(06)
Unit 4		tic reaction: Sinking core mode reaction for spherical and cylind actor design.		(06)
Unit 5		Gas-liquid reaction, practical abi netics of fluid-fluid reaction, Co		(06)

Unit	 Catalysis and Catalytic reaction: Classification of catalysis, surface area measurement, BET theory, pore size distribution, adsorption, adsorption isotherm, Internal and External transport in pore catalyst, effectiveness factor and their modules, Effect of internal transport on selectivity, Catalyst deactivation, poison, Sintering of catalyst, and uniform posing model, Mechanism and kinetics of deactivation, catalyst regeneration. Design of heterogeneous catalyst: Isothermal and adiabatic fixed bed reactors, non-isothermal, non-adiabatic fixed bed reactor, Introduction to multiphase reactor design, two phase fluidized bed model, slurry reactor model, trickle bed reactor model. 	(06)
Refe	rence Books	
1	Octave Levanspeil, Chemicaal Reaction Engineering, Jhon Wiley, London	
2	S.M.Walas, Reaction Kinetics for Chemical Engineers, McGrawHill, NewYark	
3	J.M.Smith, Chemical Reaction Kinetics, Mc GrawHill,1981	
4	Bischott and Fromment, Chemical Reactor Designandanalysis, Wesley-1982	
5	Fogler H.S, Ellement of Chemical Reactionengineering, prantice-hall19863	

	Tatyasah	eb Kore Institute of Engineering & Technolog	y, Warananagar	
	F	irst Year M.Tech. Chemical Engineering Seme	ester- II	
		Elective – IV		
	(Ch-PE – 2031 Catalysis and Surface Phenom	ena	
Teaching Sch	eme		Examination S	Scheme
Lectures	03 Hrs/Week		CIE	40 Marks
Tutorials			ESE	60 Marks
Total Credits	03		TW	
			Duration of ES	SE .
Course C				
	-	s of homogenous and heterogeneous catalysis, cata	lytic activity and	selectivity and the
relevance to gr	een chemistry and	d technology		
CO2: To under	rstand the kinetics	of homogenous and heterogeneous catalytic reaction	ons and catalytic	cycles
CO3: To famil	iarize with the syn	nthesis and characterization of catalysts		
CO4: To under	rstand the applicat	ion and mechanisms of several types of catalysts		
CO5: Knowled	lge of heat and ma	ass transfer effects on catalytic reactions.		
CO6: Ability t	o design different	types of reactors for conducting catalytic reactions		
Cour	rse Contents]	Hours
Intro	duction of Cata	ysis : Classification of Catalysis - Homogeneous,		
Heter	ogeneous, Biocat	alysts, Preparation of catalysis - Laboratory Techn	iques,	
Unit 1 Indus	strial methods, Tra	ansition models, Dual functional catalysts, Zeolites	Enzymes,	(06)
		r Catalysts, Pellets, Composition, Active ingredier	•	
	•	atalysts activation.	7	
Suppo				

Unit	 Catalysts Characterization: Surface area measurements, BET Theory, Pore size distribution, Porosimetry Chemisorption techniques, Static and dynamic methods, Crystallography and surface analysis techniques, XRD, XPS, ESCA, ESR, NMR, Raman and Masbauar spectroscopies, Surfaceacidityandtoxicity, Activity, Lifetime, Bulkdensity, Thermalstabilityetc. 	(06)
Unit	 Theories of Catalysts: Crystal structure and its defects, Geometric and electronic factors, Analysis of transition model catalysis, Chemistry and thermodynamics of adsorption, Adsorption isotherms - Langmuir model, Tempkin model, Freundich model, Elovich equation, Langmiur Hinshel - wood model, Rideal - Eely mechanism, Reversible - irreversible mono and bimolecular reactions with and without inerts, Determination of rate controlling steps, Inhibition, parameter estimation. 	(06)
Unit	 Mass and Heat Transport in Porous Catalysts :Internal and external transport, fixed bed, Fluidized bed reactors, Effect of internal transport on selectivity. Effectiveness factor and Thiele modulus. 	(06)
Unit	 Catalyst Deactivation : Poisons, sintering of catalysts, Pore mouth plugging and uniform poisoning models, Kinetics of deactivation, Catalyst regeneration. 	(06)
Unit	 Industrial Catalysis :Industrial catalysts preparation methods, Typical industrial catalytic processes, Case studies, Catalytic deactivation prevention methods, New techniques for catalyst characterization, Overall study. 	(06)
Refe	ence Books Emmett, P.H "Catalysis Vol. I and II, Reinhold Corp.", New York, 1954.	
2	"Smith, J.M "Chemical Engineering Kinetics ", McGraw Hill, 1971.	
3	Thomas and Thomas - "Introduction to Heterogeneous Catalysts ", Academic Press, Londo	n 1967

		Tatyasah	neb Kore In	stitute of E	Engineeri	ing & Tech	nnology,	Warananag	gar	
		F	First Year N	M.Tech. Cł	nemical H	Engineerin	g Semest	er- II		
				El	ective –	IV				
			Ch-P	E-2031 Do	own Stre	am Proces	ssing			
Teachi	ng Scheme	9						Examinatio	on Sche	me
Lecture	Lectures 03 Hrs/Week CIE						40 Marks			
Tutorial	ls							ESE		60 Marks
Total C	redits 0	3						TW		
								Duration of	ESE	•
	ourse Outc									
CO1: U	Inderstandi	ng the fundam	nentals of do	ownstream p	processing	g for bioche	emical pro	duct recove	ry.	
CO2: A	ssessing th	e impact of cl	hange on ov	erall proces	s perform	nance				
CO3: E	xamining t	raditional unit	t operations,	, as well as a	new conc	epts and en	nerging te	chnologies t	hat are	likely to benefit
biochen	nical produ	ict recovery in	n the future.							
CO4: U	Inderstandi	ng analytical a	and process	validation i	ssues that	t are critical	l to succes	sful manufa	acturing	
CO5: St	trategies fo	r biochemical	l process ana	alysis and s	ynthesis.					
CO6: D	Design and	operation of u	nit processes	s with centr	ifugation	, chromatog	graphy, fil	tration, and	membr	ane processes
	Course	Contents							Hours	5
	Require	ment of Down	nstream Pro	ocessing :B	Basic conc	epts of sepa	aration			
	Technology, Overview of a bioprocess including upstream and downstream									
	processing, Importance of downstream processing in biotechnology,						(06)			
Unit 1	characteristics of biological molecules, New Separation process in modern									
	biotechnology; Separation characteristics of proteins and enzymes – size, stability & other biological properties; Selection of purification methodologies,									
		ristics of ferm					gies,			
		Removal and					ion: Cell			
Unit 2		n by Mechani							(06)	
Unit 2	Enzymatic lysis, physical methods, Sonication, Types of Homogenizers,				(06)					
		gation; Sedime			1	1 1	. 0.11			
		Biomass Removal and Disruption: Biomass removal and disruption: Cell disruption by Mechanical and non mechanical methods, Chemical lysis,								
Unit 3		ic lysis, physic								(06)
	•	gation; Sedime			ii, i ypes e	JI Homogen	112015,			
					ased purif	ication: icro	ofiltration	,		
Unit 4		Membrane Based Separation: Membrane based purification: icrofiltration, Jltrafiltration, Reverse osmosis (UF and RO); Dialysis; Electrodialysis;		, ,						
	Diafiltration; Pervaporation; Perstraction, Biotechnological application,					(06)				
	Structure and characteristics of membranes; Liquid membranes; Supported liquid									
	membrane; Membranereactors. RO); Dialysis; Electrodialysis; Diafiltration;						(00)			
		ation; Perstrac								
		istics of mem	branes; Liqu	11d membra	ines; Supp	ported liquid	d membra	ine;		
	Membra	nereactors								

Unit	 Separation by Adsorption and Chromatography: Types of adsorption; adsorbents types, their preparation and properties, Types of adsorption isotherms and their importance; Chromatography: general theory, partition coefficients, zone spreading, resolution and plate height concept and other chromatographic terms and parameters; chromatographic method selection; selection of matrix; separation based on size, charge, hydrophobicity and affinity: Gel filtration, Ion exchange chromatography; Reverse phase chromatography (RPC) and hydrophobic interaction chromatography (HIC), HPLC, role of HPLC in protein characterization; Chromatofocussing; Polishing of Bioproducts by Crystallization of small and large molecules, drying andFormulations. 	(06)			
Unit	 Case Studies :Baker's yeast, Ethanol, Power alcohol, Citric acid, Intracellular proteins, Penicillin, Streptomycin, Insulin, Casein, interferon, Large scale separation and purification of <i>E.coli</i>, yeast, Recombinant products. 	(06)			
Defe	De das				
1	rence Books E L V Harris and S. Angal, Protein Purification Methods, Ed. IRL Press at Oxford Universi	tv Press, 1989			
2	D.A. Daltan, E.L. Cueden and Wei Shou Hu. Discongentions Descentions Descenting for Distaching loss. Wiley				
3	J.E.Baileyand D.F.Ollis, BiochemicalEngineeringFundamentals, 2ndEdition, Mc-Graw Hill,	Inc.,1986			
4	ComprehensiveBiotechnology"Vol.2Ed.:M.Moo-Young(1985)				
5	Seperation, Recoveryand Purificationin Biotechnology, Aenjo J.A.and J.Hong				
6	Priniciples of fermentation technology" by P F Stanbury and A Whitaker, Pergamonpress (1984)			
7	"Biotreatment, Downstream Processing and Modeling" (Advances in Biochemical Enginee Vol 56) by T. Schepleretal,Springer Verlag	ring/Biotechnology,			
8	Downstream Processing" by J.P. Hamel, J.B. Hunter and S.K. Sikdar, American Chemical	Society			
9	Protein Purification" by M.R. Ladisch, R.C. Wilson, C.C. Painton and S.E. Builder, Americ Chemical society, Verlag				
10	Chromatographic and Membrane Processes in Biotechnology" by C.A. Costa and J.S. Cabra AcademicPublisher	al, Kluwer,			
11	Protein purification: Principle and practice, third edition, Robert k. Scopes, Springer, editors	Charles R.Cantor			

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar

First Year M.Tech. Chemical Engineering Semester- II

Elective – IV

Ch-PE-2041 COMPUTATIONAL FLUID DYNAMICS

	Cl	h-PE-2041 COMPUTATIONAL FLUID DYNAMIC	LS
Teachir	ng Scheme	E	xamination Scheme
Lectures	s 03 Hrs/Week	С	TE 40 Marks
Tutorial	ls	E	SE 60 Marks
Total Cr	redits 03	Т	W
			Duration of ESE .
	urse Outcome:-		
		significant level of experience in the use of modern CF	FD software for the analysis of
	k fluid-flow systems.		
		rodynamic flows. Appraise & compare current CFD so	ftware. Simplify flow problems
	ve them exactly		
meshing		blem properly within CFD context, performing solid m	odelling and producing grids via
		sics and mathematical properties of governing Navier-S	Stokes equations and define prope
	ry conditions for solution		stokes equations and define prope
		he power and limitations of CFD.	
	<u>^</u>	of a useful design tool for industry and a vital research	tool for thermos-fluid research
across n	nany disciplines.	· ·	
	Course Contents		Hours
	Governing Differential Equation And Finite Difference Method :		
Unit 1		nd Boundary conditions – Initial and Boundary Value p	problems (06)
	– Finite difference met	hod, Central, Forward, Backward difference.	
Unit 2	Uniform and non unifo	rm Grids, Numerical Errors, Grid Independence Test.	(06)
	Conduction Heat Tra		
Unit 3	-	al conduction, two and three dimensional steady state	(06)
Omt 5		blems, Transient one-dimensional problem, Two-dimensional Transient	
	Problems		
	Incompressible Fluid		
Unit 4		Stream Function – Verticity method, Determination of p PLE Procedure of Patankar and Spalding, Computation	
		inite difference approach.	01
	Convection Heat Tra		
			usion,
Unit 5	Unsteady one- dimensi	onal convection - diffusion, Unsteady two-dimensiona	
		- Introduction to finite element method - solution of st	teady heat
		Incompressible flow – simulation byFEM.	
	-	ne equation model, $K - \varepsilon$ Models, Standard and High ar	
Unit 6	Reynolds	tion of fluid flow and heat transfer using standard code	(06)
	number models Predic	chon of thurd flow and neat transfer lising standard code	

Refe	rence Books
1	Muralidhar, K., and Sundararajan, T., "Computational Fluid Flow and Heat Transfer", Narosa Publishing House, New Delhi,1995.
2	Ghoshdasdidar, P.S., "Computer Simulation of flow and heat transfer" Tata McGraw-Hill Publishing Company Ltd., 1998.
3.	Subas, V.Patankar "Numerical heat transfer fluid flow", Hemisphere PublishingCorporation, 1980.
4	Taylor, C and Hughes, J.B. "Finite Element Programming of the Navier-Stokes Equation", Pineridge Press Limited, U.K., 1981.
5	Anderson, D.A., Tannehill, J.I., and Pletcher, R.H., "Computational fluid USA, 1984
6	Fletcher, C.A.J. "ComputationalTechniquesfor Fluid Dynamics 1" Fundamental and General Techniques, Springer – Verlag, 1987.
7	Fletcher, C.A.J. "ComputationalTechniques for fluid Dynamics 2"Specific Techniques for Different Flow Categories, Springer – Verlag, 1987.
8	Bose, T.X., "NumericalFluidDynamics" NarosaPublishingHouse, 1997

	Tatyas	aheb Kore Institute of Engineering & Technology, Waranana	gar	
		First Year M.Tech. Chemical Engineering Semester- II		
		Elective – IV		
		Ch-PE-2041 Energy Engineering		
Teaching	g Scheme	Examin	ation Sche	eme
Lectures	03 Hrs/Week	CIE		40 Marks
Tutorials		ESE		60 Marks
Total Cre	dits 03	TW		
		Duration	n of ESE	•
	rse Outcome:-			
	<u> </u>	ous types of energy resources and the principles for convertin	g from one	form to another.
	*	gy use over the lifecycle of a product or project.		
		ynamic systems and evaluate the performance of the system.		
		erations of energy production, management and conservation	including	the environmental
	omic impact of commo			
CO5: Und recovery.		nagement methods. Rational energy consumption. Energy co	nservation.	Waste heat
CO6: Uno	derstanding Energy cor	servation in industry.		
	Course Contents		Hou	irs
]	Events, Energy require	, conversion factors, general classification of energy, Histori ment of Society in Past and Present situation, World energy		
Unit I	energy crisis, energy al	onsumption, Indian energy resources and energy consumptio ternatives, future possibilities of energy need and availability		(06)
		conventional energy resources, internal combustion engines, bines, hydroturbines (thermodynamic cycles not included).		

	Nuclear reactors, thermal, hydel and nuclear power plants (process outlines only),	
Unit	2 efficiency, merits and demerits of the above power plants, combined cycle power plants, fluidized bed	(06)
	combustion, small hydropower.	
	Solar energy, solar thermal systems, flat plate collectors, focusing collectors, solar	
	water heating, solar cooing, solar distillation, solar refrigeration, solar dryers, solar	
Unit	3 pond, solar thermal power generation, solar photovoltaic systems, solar cells, solar	(06)
	photovoltaic power generation, solar energy application in India, energy plantations,	
	wind energy, types of windmills, types of wind rotors,	
	Darrieus rotor and Gravian rotar, wind electric power generation, wind power in India,	
Unit		(06)
	conversion, tidal energy conversion, geothermal energy.Biomass energy resources, thermochemical and biochemical methods of biomass	
	conversion, combustion, gasification, pyrolysis, biogas production, ethanol, fuel cells,	
	alkaling fuel call phosphoric acid fuel call molton carbonate fuel call solid oxide fuel	
Unit	cell, solid polymer electrolyte fuel cell, magneto hydro dynamics, open cycle and	(06)
	closed cycle systems, magneto hydro dynamic power generation, energy storage routes	
	like thermal energy storage, chemical, mechanical storage, electrical storage.	
	Energy conservation in chemical process plants, energy audit energy saving in heat	
	exchangers, distillation columns, dryers, ovens and furnaces and boilers, steam	
Unit		(06)
	industry, cogeneration, pinch technology, recycling for energy saving, electrical energy conservation in chemical process plants, environmental aspects of energy use.	
	conservation in chemical process plants, environmental aspects of energy use.	
Dofo	rence Books	
1	Goldmberg J., Johansson, Reddy A.K.N. & Williams R.H., Energy fora Sustainable World, J.	IohnWiley
2	Bansal N.K., Kleeman M. & Meliss M., Renewable Energy Sources & Conversion Tech., Ta	-
<u> </u>		
	Sukhatme S.P., Solar Energy, Tata McGrawHill	
4	Mittal K.M., Non-Conventional EnergySystems, WheelerPub	
5	Venkataswarlu D., Chemical Technology, I, S.Chand	
6	PandeyG.N., ATextBookonEnergySystemand Engineering, VikasPub.	
7	Rao S. & Parulekar B.B., EnergyTechnology, KhannaPub.	
8	RaiG.D.,Non-ConventionalEnergySources,KhannaPub.	
9	Nagpal G.R., Power Plant Engineering, KhannaPub.	
	Books	
1	Power Plant Engineering, P. K. Nag Tata McGraw Hill 2nd edn2001.	
2	Power Plant Engineering, Domakundawar, Dhanpath Rai sons.2003	

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar M.Tech. (Chemical Engineering), Sem.-II

	Ch-PE-2	041 (Elective IV) Advanced Separation T	echniques	
Teaching Scheme Examination Scheme				
Lectures	03 Hrs/Week		CIE	40 Marks
Tutorials			ESE	60 Marks
Total Credits	03		TW	
			Duration of ESE	•
Course O	utcome:-			
CO1: Apply m	odern separation	techniques in various applications.		
CO2: To desig	gn a process based	l on separation principles.		
CO3: Appropri	iate application of	f separation steps in industrial processes.		
CO4: To comp	oute the kinetics of	of various types of separation processes.		

CO5: Analyze and design pervaporation, chromatography and dialysis based separation processes.

CO6: Analyze and design novel membranes for intended application.

	Course Contents	Hours
Unit 1	General Review of Conventional process, recent advances in separation technique based on size, surface properties ionic properties and other special characteristics of substance.	(04)
Unit 2	Filtration Process Concept, Theory and Equipment used in Cross flow filtration, Cross flow electro filtration, duel functional filtration surface based solid- liquid separation involving stead liquid, Siroflocfilter.	(04)
Unit 3	Membrane filtration Types and choice of membranes, Plates and frame, tubular, Spherial wounded and hollow fibre membrane, reactor and their relative merits , commercial, pilot plant, and labortary membranes, Permeates involving analysis, reverse osmosis, nano filtration, ultrafiltration, microfiltration and donan analysis, economics of membrane operation, cevanic membrane.	(05)
Unit 4	Separation by Adsorption technique Mechanism, Choice and type of adsorbent, normal adsorption technique, affinity chromatography, and immune chromatography, types of equipment and commercial processes, recent advance and processes, Economics.	(05)
Unit 5	Ionic Separation: Controlling factor, application, type of equipment used in electrophoresis, dielectrophoresis, ion exchange chromatography, and electro-dialysis, commercial processes.	(05)

Unit	6 Other technique: Separation Involving lyophilisation, pervaporation and permeation technique for solid, liquid, and gases, industrial variables and examples, zone melting, add crystallization, other separation processes, supercritical fluid extraction, oil spillage management.	(05)
Refe	rence Books	
1	LaceyR.E andS.loaeb, industrial processing with membrane, wiely, new yark-1972	
2	KingC.J,Separationprocesses,TataMc-Graw-hillpublicationCo.ltd-1982	
3	Schoew, HM, New Chemical Engineering Separation technique, future sciencepublisher 197	2
4	Ronald W.Ronssel, Handbook of process Technology, wily new York 198	

	5	eb Kore Institute of Engineering & Technology, Warananagar irst Year M.Tech. Chemical Engineering Semester- II	
		OEC-CH2051: Project Management	
Teaching Scheme		Examination Sche	me
Lectures	03 Hrs/Week	ISE	40 Marks
Tutorials		ESE	60 Marks
Total Credits	03	TW	
		Duration of ESE	•

Course Objectives : -
1 To study concept of Project Management and skills
2 Ability to understand organization structure
3 To acquaint with staffing the project office and team
4 Ability to understand controlling parameters and human behaviour
5 To study and develop a project scope
6 Ability to use CPM and PERT methods

	Course Contents	Hours
Unit 1	Project Management growth Concept and Definition, General System Management, Project management, Resistance to Change, System programmed, Project product vs project management a definition focus of success,Face of failure,Project life cycle,Project management methodologies,Corporate culture	(05)

Unit 2	Organizational structure Introduction, organizational work flow, Traditional organization, Developing work, integration position, Project coordinator, Projected organization, Matrix structure, Strong weak balanced matrix, Project management Expertise, Studying tips for the PMF (Project Management CertificateExam)	(05)
Unit 3	Organizing and staffing the project office and team The staffing environment, Selecting the project manager,Skill requirement for project and programme manager, Organizational staffing progress,The project office, Project organizational chart.	(05)
Unit 4	management function Controlling, Directing ,Project Authority, Interpersonal life cycle, leadership in a project management environment, life cycle leadership, organizational impact ,employee manager problem, management pitfalls, Communication, Human behavior education, Management policies andprocedure.	(05)
Unit 5	Special Topic Performance measurement, Financial compensation and rewards, Critical Issues with rewarding project team, mega Project, Morality, Ethics and corporate culture, Professional Responsibility, Internal Prternership, External Prternership, Training and education, Integrated project team, Virtual project team,Break through	(05)

Course Outcomes (CO): At the end of course students will
1. Define various operations like distillation, extraction, leaching, Compare and classify various mass transfer operations with or without chemical reaction
2. Design calculation of distillation column for the multi-component system
3. Analyze the problem of Separation by adsorption and design of absorber, chromatographic separation
4. Evaluate the separation by liquid extraction, leaching used and justify the extract operation to choose for specific problem
5. Estimate final data for designing number of stages, Height of column in the operations
6. Define various operations like distillation, extraction, leaching

Text Books

1

"A system Approach to	planning	Scheduling	Controlling	by Harolad Kerzne	10th Ed Willy
11 by been 11 ippi ouen to	pranning,	Seneganng,	controlling,	of Harolaa Hereite	. iouinde (filing

Reference Books

1	Project Management Theory and Practices Crary L Richardsion, CRC press, Taylor and Franas Group, boca ration London, Newyark
2	Project Management for Engineer business, technology 4 th Ed, Jhon M Nicholas, Herman

	Tatyasa	heb Kore Institute of Engineering & Te		
		First Year M.Tech. Chemical Engineer	ing Semester- II	
		Ch-OEC-2051 Operation Res	search	
Teaching	g Scheme		Examination Sch	eme
Lectures	03 Hrs/Week		CIE	40 Marks
Tutorials			ESE	60 Marks
Total Cre	dits 03		TW	
			Duration of ESE	
Cou	rse Outcome:-			
CO1: Iden	ntify and develop opera	tional research models from the verbal d	lescription of the real system.	
CO2: Und	derstand the mathematic	al tools that are needed to solve optimis	sation problems.	
CO3: Use	e mathematical software	to solve the proposed models		
CO4: Dev	velop a report that descr	ibes the model and the solving technique	e, analyse the results and propo	ose
recommen	ndations in language un	derstandable to the decision-making pro	ocesses in Management Engine	ering.
CO5: Cor	nduct and interpret post	optimal and sensitivity analysis and exp	plain the primal-dual relationship	ip.
		programming problems and appreciate	· ·	
	Course Contents			Hours
]	Introduction to Operation	ons Research: Basics definition, scope, o	bjectives, phases, models	
Unit 1	and limitations of Opera	tions Research. Linear Programming Pr	roblem – Formulation of LPP,	(06)
	Graphical solution of LPP. Simplex Method, Artificial variables, big-M method, two-			(00)
		cy and unbound solutions		
		Formulation, solution, unbalanced Tra		
		- Northwest corner rule, least cost meth		(06)
		Optimality test: the stepping stone meth mulation. Hungarian method for optimal		
		aveling salesman problem and assignme		(06)
	-	ution of Sequencing Problem – Process	-	
		n Jobs through 3 Machines – Processing		(06)
	- Processing n Jobs thro			~ /
]	Dynamic programming.	Characteristics of dynamic programmin	ng. Dynamic programming	
		anagement employment smoothening, c	capital budgeting, Stage	(06)
		rgo loading and Reliability problems.		
		itive games, rectangular game, saddle p		
		egies, value of the game. Solution of gan		(06)
		ectangular games without saddle point –	- mixed strategy for 2 X 2	
	games.			

Text	t Books
1	P. Sankara Iyer, "Operations Research", Tata McGraw-Hill,2008.
2	A.M. Natarajan, P. Balasubramani, A. Tamilarasi, "Operations Research", Pearson Education, 2005.
Refe	erence Books
1	JKSharma.,"OperationsResearchTheory&Applications,3e",MacmillanIndiaLtd,2007.
2	P. K. Gupta and D. S. Hira, "Operations Research", S. Chand & co.,2007.
3	JKSharma., "OperationsResearch, ProblemsandSolutions, 3e", MacmillanIndiaLtd.
4	N.V.S. Raju, "Operations Research", HI-TECH,2002.

	2	o Kore Institute of Engineering & Technology, Warananagar	
	First Yea	ar M.Tech. Chemical Engineering Semester- II Practical	
		Ch-LC-2061 Analytical Laboratory	
Teaching Sche	me	Examination Sch	eme
Practical's	04 hr/Week	ESE	
Total Credits	02	TW	25 Marks
		Duration of ESE	
Course O	atcome:-		
CO1: Apply ma	· 1 •	and chemical concepts to routine tasks such as the analysis and synth	esis of chemic
compounds and		pabilities and limitations of instrumental methods	
A	and understand the ca	patientes and minitations of instrumental methods	
CO2: Describe		llecting and interpreting data in the laboratory.	
CO2: Describe CO3: Demonst	rate competence in co		hanges.
CO2: Describe CO3: Demonst CO4: Apply pr	rate competence in co inciples of chemistry t	Îlecting and interpreting data in the laboratory.	0

CO6: Conduct basic manual quantitative and qualitative analyses accurately, using prescribed laboratory procedures.

Cours	e Contents
1.	Analysis Of Given Sample by using Gas Chromatography
2.	Detail study and Analysis of High Performance Liquid Chromatography(HPLC)
3.	Instrument Exploration :Scanning Electron Microscopy(SEM)
4.	Measurement, analyze, and discussion of three different types of
	Samplevia Thermogravimetric Analysis, orTGA
5.	Determination of the amount of carbon monoxide in exhaust samples
	byFTIR spectroscopy
6.	Spectrophotometry: Absorption spectra and the use of light absorption
	tomeasure concentration
7	Analysis by using CalElastron bornsis
/	Analysis by using GelElectrophoresis

	Tatyasah	eb Kore Institute of Engineer	ing & Technology, Waranai	nagar	
	F	irst Year M.Tech Chemical E	ngineering) Semester- II		
		Ch-SW-2071: Se	eminar – II		
Teaching Scho	eme		Examina	tion Sche	me
Lectures			ISE		
Tutorials			ESE (Or	al)	
Practical	02Hrs/Week		TW		50
Total Credits	01		Duration	of ESE	
Course Obje	ctives (CO):				
1.To Identify,	understand and	discuss current, real-world iss	sues.		
2.To Distingui	sh and integrate	differing forms of knowledge	and academic disciplinarya	approache	es (e.g.,
humanities and	l sciences) with	that of the student's own acad	lemic discipline (e.g., in agi	riculture,	architecture, art,
business, econ	omics, education	n,engineering, natural resourc	es, etc.). and apply a multid	isciplinar	y strategy to
addresscurrent	, real-world issu	es.			
3. To Improve	oral and written	communication skills.			
4. To Improve	presentation ski	lls			
Î	-	Course Contents			Hours

	paper on some Mechanical Engin	be based on tentative topic of dissertation such as specific well defined area/ specialized str neering.Each student has to prepare a write up of "A4" size sheets and submit it in IEEE for erm work.	eam of of about	
1	department and h carried out, prepa	to deliver a seminar talk in front of the faculty is classmates. The faculty, based on the quality or ration and understanding of the candidates. Som ed for the attendance of a student in the sem	of work, e marks	()
Course	e Outcomes (CO): At	the end of course students will		
		eadership, collaborative engagement, socially res		
		world, and a service-oriented commitment to ad-	vance and	sustain local and global
commur				
		gh independent learning and collaborative study,		
		the arts, humanities, sciences, and social science	es, withdis	ciplinary specialization
		ormation across disciplines.		
		iple thinking strategies to examine real-world		
issues, e	explore creative avenue	es of expression, solve problems, and make conse	equentialde	ecisions
	-	culate, create and convey intended meaning usin strates respect and understanding in a complex	-	and non-verbal method
	Tatyasal	hebKore Institute of Engineering & Technology,	Waranana	gar
	-	First Year M.Tech Chemical Engineering Semest		-
		Ch-2081: Comprehensive Viva		
Teachi	ng Scheme	_	Examinati	on Scheme
T			ICE	

Teaching Sche	eme		Examination Scheme			
Lectures			ISE			
Tutorials			ESE (Oral)	25		
Total Credits			TW			
			Duration of ESE			
Course Obje	ctives (CO):					
	1. To verify the continuous assessment and performance of students by external examiner					
	and internal examiner.					
	Course Contents Hours					

1	The students have to prepare on all subjects which they have studied inI st and II nd semesters The viva will be conducted by the External/Internal Examiner jointly and their appointments will be made by institute. The indepth knowledge, preparation and subjects understanding will be assessed by theExaminers.	()
Course	e Outcomes (CO): At the end of course students will	
	1. Verify their knowledge based on the subjects they have studied Semester-II.	in Semester-I and

SEMESTER-III

	Tatyas	aheb Kore Institute of Engi	neering & Technology, Warana	nagar	
		First Year M. Tech Chem	ical Engineering Semester- II		
		Ch-MC-3011 Res	earch Methodology		
Teaching	g Scheme		Examina	ation Scheme	
Lectures	02 Hrs/Wee		ISE	40 Marks	
Tutorials			ESE	60 Marks	
Total Cre	dits 02		TW		
			Duration	of ESE .	
Course	Objectives (CO):				
	1 Underst	and some basic concepts of	research and its methodologies		
	2 Identi	y appropriate research topi	CS		
	3 Select	and define appropriate rese	arch problem and parameters		
	4 Prepare	a project proposal (to under	takeproject)		
	5 Organiz	e and conduct research (adv	ranced project) in a more approp	priate manner	
	6 Understa	nding how to write a resear	ch report and thesis		
		Course Cont	ents	Hours	
	Objectives and t	ypes of research: Motiva	tion and objectives - Resear	ch	
Unit 1	methods vs Methodology. Types of research- Descriptive vs. Analytical,			al, (04)	
	Applied vs. Funda	nental, Quantitative vs. Qu	alitative, Conceptual vs.		
	Empirical.				

	Descende Formulation Defining and formulation the manual 11		
Unit 2	Research Formulation – Defining and formulating the research problem -		
	Selecting the problem - Necessity of defining the problem - Importance of		
	literature review in defining a problem – Literature review – Primary and	(04)	
	secondary sources – reviews, treatise, monographs- patents – web as a source –		
	searching the web - Critical literature review - Identifying gap areas from		
	literature review - Development of working hypothesis.		
	Research design and methods - Research design - Basic Principles- Need of		
	research design — Features of good design - Important concepts relating to		
Unit 3	research design - Observation and Facts, Laws and Theories, Prediction and	(04)	
	explanation, Induction, Deduction, Development of Models. Developing a		
	research plan - Exploration, Description, Diagnosis, and Experimentation.		
	Determining experimental and sample designs.		
	Data Collection and analysis: Execution of the research - Observation and		
	Collection of data - Methods of data collection – Sampling Methods- Data		
Unit 4	Processing and Analysis strategies Data Analysis with Statistical Packages - Hypothesis-testing - Generalization and	(04)	
	Interpretation.		
	Reporting and thesis writing – Structure and components of scientific reports		
	- Types of report – Technical reports and thesis – Significance – Different steps		
Unit 5	in the preparation – Layout, structure and Language of typical reports –	(04)	
	Illustrations and tables - Bibliography, referencing and footnotes - Oral		
	presentation – Planning – Preparation – Practice – Making presentation – Use		
	of visual aids - Importance of effective communication.		
	Application of results and ethics - Environmental impacts - Ethical issues -		
	ethical committees - Commercialization - Copy right - royalty - Intellectual		
Unit 6	property rights and patent law-Trade Related aspects of Intellectual Property	(04)	
	Rights-Reproduction of published material	(04)	
	Plagiarism - Citation and acknowledgement - Reproducibility and		
	accountability		
Assignr	nents: Each student will submit minimum 4 assignments based on the different topics in cons	ultation with facult	
-	rea of research methodology keeping track of the recent trends in research and developmen		
ii iiic a	r one seminar on relevant topic of research.		
amost-	r one cominer on relationt tonic of recearch		

Cou	rse Outcomes (CO): At the end of course students should be able to
1 Ide	entify comprehensive understanding of principal in demonstrating academic research
2 Dif	ferentiate possible research resources and transform issue in broader perspective
3 Co	mmunicating research in own words to create new meaning
4 Ch	oose and propose a good research proposal in systematic way.
-	ply appropiate research techniques and tools from different approached with profound lectual integrity and ethics
Text	Books
1	Kothari, C.R., 1990. Research Methodology: Methods and Techniques. New Age International.
Refe	rence Books
1	Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., 2002. An introduction to Research Methodology, RBSA Publishers.
2	Sinha,S.C.and Dhiman,A.K.,2002.Research Methodology, Ess Ess Publications.2 volumes
3	Trochim, W.M.K., 2005. Research Methods: the concise knowledge base, Atomic Dog Publishing.
4	Wadehra, B.L. 2000. Law relating to patents, trademarks, copyright designs and geographical
	indications. Universal Law Publishing.

		Tatyasaheb Kore Institute of Engineering & T	echnology, V	Varananagar
		First Year M.Tech. Chemical Engineering Seme	ester- III	
		Ch-MC-3021 Industrial Training		
Teachi	ng Scheme	Examinatio	on Scheme	
Lecture	es=		ISE	
Tutoria	ls		ESE	
Practica		/eek	TW	50
Total C			Duration of	ESE
	e Objectives (CO			
rom wh	nat they have lear	to actual working environment and enhance their kn ned in the college.	-	
	0 1	nust be followed by student.		
3.To he	lp the students ab	out the safety practices and regulations inside the ind	dustry and to	instill
he spiri	t of teamwork an	d good relationship between students and employees	5.	
		Course Contents		Hours
Unit 1	during vacati assignment of analysis. The form part of departmental The training sl	is to prepare the report of training undergone in the on after semester II. It shall include the brief of completed by the candidate and general observa- identified areas for undertaking the dissertation we report. The term work marks should be based on r oral exams. hould be of minimum two weeks from reputed indu- te same should be a part of the report.	details of ation and ork shall eport and	
Course	e Outcomes (CC): At the end of course students will		
		demonstrate the use, interpretation and application of a	n appropriate	international engineering
star	ndard in a specific	situation.		
		o analyze a given engineering problem, identify an a logy, implement the methodology and propose a mea		
	3 Ability to	o apply prior acquired knowledge in problem solving	5	
		o identify sources of hazards, and assess/identify app	ropriate heal	th & safety measures
	5 Ability to	work in a team and take initiatives		
	· · · · · · · · · · · · · · · · · · ·			
		p effectively communicate solution to problems (oral	l, visual, writ	ten)
	6 Ability to	o effectively communicate solution to problems (oral o manage a project within a given time frame	l, visual, writ	ten)

Tatyasaheb Kore Institute of Engineering & Technology, Warananagar Second Year M.Tech Chemical Engineering, Semester-III Ch - SLC/AC -3031: MOOC/Swayam **Teaching Scheme Examination Scheme** Lectures ISE ____ ____ Tutorials ESE --_____ TW Total Credits --50 Duration of ESE ____ **Course Objectives (CO):** 1. To teach use of Mooc/Swayam as a learning platform designed to provide educators, administrators and learners with a single robust, secure and integrated system to create personalized learning environment. **Course Contents** Hours Students will be able to choose course of their choice from Mooc/swayam and to be acquaintance with recent developments in Chemical Engineering beyond syllabus The term work under this submitted by the student shallinclude. 1) Work diary maintained by the student and countersigned by his guide. 2) The content of work diary shall reflect the efforts taken by candidates for (a) Searching the suitable project work. (b) Visits to different factories or organizations. Unit 1 (c) The brief report of feasibility studies carried to come to final conclusion. (d) Rough sketches (e) Design calculations etc. carried by the student. 3) The student has to make a presentation in front of panel of experts in addition to guide as decided by department head. Course Outcomes (CO): At the end of course students will Students will be able to choose course of their choice from Mooc/swayam and to be acquaintance with recent developments in Chemical Engineering beyond syllabus.

	•	neb Kore Institute of Engineer	6	agar
	5	econd Year M.Tech Chemical Ch-PC-3041: Disser		
Teachir	ng Scheme			ion Scheme
Lecture			ISE	
Tutorial	ls		ESE (Oral)) 50
Practica	al 16Hrs/Week		TW	50
Total C	redits 08		Duration of	f ESE
Course	e Objectives (CO):			
	programme of s	per knowledge, understanding tudy. e more deeply into and synthes	·····	
		Course Contents		Hours
	guidelines. Format of disser The dissertation w total No. of minim	e candidate, shall be acco cation report: ork report shall be typed on num pages shall not less per the requirement.	A4 size bond paper. The	
Unit 1	 Title sh Certific Acknow List of Abbrev Abstract Content Text w Discuss 	eate vledgement figures, Photographs/Graphs/ iations. et	/Tables	

Course Outcomes (CO): At the end of course students will

1. Design and engage in, an independent and sustained critical investigation and evaluation of a chosen research topic.

2. Systematically identify relevant theory and concepts, relate these to appropriate methodologies and evidence, apply correct techniques and draw suitable conclusions.

3. Involve in systematic finding and critical review of appropriate and relevant information sources

4.Understand and apply ethical standards of conduct in the collection and evaluation of data and other resources

5. Present research concepts and contexts clearly and effectively both in writing and orally

	Tatyasa	heb Kore Institute of Engineer	ing & Technology, Warananagar		
		econd Year M.Tech Chemical	Engineering, Semester-III		
		Ch-PC-4011: Disser	tation Phase-II		
Teaching Sche	eme		Examination Scheme	1	
Lectures			ISE		
Tutorials			ESE (Oral)	100	
Practical	32Hrs/Week		TW	100	
Total Credits	16		Duration of ESE		
Course Obje	ctives (CO):				
1	l. To grow deepe	r knowledge, understanding, ca	apabilities and attitudes in the contex	t of the programme	
of study.					
2	2. To investigate	nore deeply into and synthesise	e knowledge acquired in previous stu	dies.	

	Course Contents	Hours
	The dissertation submitted by the student on topic alreadyapproved by academic council on basis of initial synopsis submittedby the candidate, shall be according to following guidelines.Format of dissertation report:The dissertation work report shall be typed on A4 size bond paper. The totalNo. of minimum pages shall not less than 60. Figures, graphs, annexure etc beas per the requirement.	
Unit 1	The report should be written in the standard format. 1. Title sheet 2. Certificate 3. Acknowledgement 4. List of figures, Photographs/Graphs/Tables 5. Abbreviations. 6. Abstract 7. Contents. 8. Text with usual scheme of chapters. 9. Discussion of the results and conclusions Bibliography (the source of illustrative matter be acknowledged clearly at appropriate place IEEE/ASME/Elsevier Format) The students should publish at least one paper in a reputed journal (UGC approved/ SCOPUS Indexed etc.) The student has to make a presentation in front of panel of experts in addition to	
	guide as decided by department head	
	Outcomes (CO): At the end of course students will sign and engage in, an independent and sustained critical investigation and evaluation of a chosen	research topic.

2. Systematically identify relevant theory and concepts, relate these to appropriate methodologies and evidence, apply correct techniques and draw suitable conclusions.

Years

Institute PG Co-ordinator T.K.I.E.T., Warananagar

APPROVED BY

Chairman **Board of Studies** 181

Board of Studies CHEMICAL ENG 3. DEPT. Tatyasheb Kore Institute of E & Technology (Autonomo: Warananagar, Dist. Kolitashir

Academic Dean F.K.I.E.T., Warananagar

muthors Principal T.K.I.E.T., Warananagar

2

En Wa VACAP

Kolha eal of Institute SEERING

Chairman Academic Council asaheb Koic I stitute of Engg Techology (Autonomous) arahanagar, Dist. Kolhapur